Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T08:22:42.231Z Has data issue: false hasContentIssue false

Multiscale 3D Patterning of Nanoparticle Assemblies for Plasmonic Devices

Published online by Cambridge University Press:  17 April 2019

R. Carles
Affiliation:
Groupe Nanomat – CEMES-CNRS – Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France
C. Farcau
Affiliation:
Groupe Nanomat – CEMES-CNRS – Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France
G. Benassayag
Affiliation:
Groupe Nanomat – CEMES-CNRS – Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France
C. Bonafos
Affiliation:
Groupe Nanomat – CEMES-CNRS – Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France
P. Benzo
Affiliation:
Groupe Nanomat – CEMES-CNRS – Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France
L. Cattaneo
Affiliation:
Groupe Nanomat – CEMES-CNRS – Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France
B. Pecassou
Affiliation:
Groupe Nanomat – CEMES-CNRS – Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France
A. Zwick
Affiliation:
Groupe Nanomat – CEMES-CNRS – Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France
Get access

Abstract

We have developed a novel strategy for elaborating composite plasmonic nanomaterials in a well controlled manner. Combining several techniques commonly used in microelectronic engineering, namely sputtering deposition, thermal oxidation, ultra low energy ion implantation, focused ion beam lithography, thermal or laser annealing, we have obtained 3D patterned optical layers. Their spatial and spectral responses take benefit of optical interference, plasmonic resonance effects and coupling between excitations in both near and far field regime. Moreover these structures show high level of uniformity, reproducibility and stability, and they preserve flat and chemically uniform surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Atwater, H.A. and Polman, A., Nature Mat. 9, 205 (2010).Google Scholar
2. Murray, W. A. and Barnes, W. L., Adv. Mater. 19, 3771 (2007).Google Scholar
3. Baker, G.A. and Moore, D.S., Anal. Bioanal. Chem. 382, 1751 (2005).Google Scholar
4. Bacsa, W. S. and Lannin, J. S. Applied Physics Letters. 61, 19 (1992).Google Scholar
5. Schrand, A.M., Braydich-Stolle, L.K., Schlager, J.J., Dai, L. and Hussain, S.M., Nanotechnology, 19, 235104 (2008).Google Scholar
6. Carles, R., Farcau, C., Bonafos, C., Benassayag, G., Pecassou, B., Zwick, A., Nanotechnology, 20, 355305 (2009).Google Scholar
7. Carles, R., Farcau, C., Campos, J., Bonafos, C., Benassayag, G., Zwick, A., Mater. Res. Soc. Symp. Proc. 1182, EE09-21 (2009).Google Scholar
8. Evanoff, D.D. and Chumanov, G., Chem. Phys. Chem. 6, 1221 (2005).Google Scholar
9. Portales, H., Saviot, L., Duval, E., Fujii, M., Hayashi, S., Del Fatti, N. and Vallee, F., J. Chem. Phys. 115, 3444 (2001).Google Scholar