Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T04:42:51.606Z Has data issue: false hasContentIssue false

Multiple magnetic transitions and magnetocaloric effect in hydrothermally synthesized single crystalline La0.5Sr0.5MnO3 nanowires

Published online by Cambridge University Press:  12 July 2012

Sayan Chandra
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620, USA
Anis Biswas
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620, USA
Subarna Datta
Affiliation:
Unit for Nanoscience, S N Bose National Centre for Basic Science, Kolkata 700098, India
Barnali Ghosh
Affiliation:
Unit for Nanoscience, S N Bose National Centre for Basic Science, Kolkata 700098, India
A.K. Raychaudhuri
Affiliation:
Unit for Nanoscience, S N Bose National Centre for Basic Science, Kolkata 700098, India
M.H. Phan
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620, USA
H. Srikanth*
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620, USA
*
*Corresponding author: [email protected]
Get access

Abstract

We have successfully prepared La0.5Sr0.5MnO3nanowires using a novel hydrothermal synthesis process and studied their magnetic and magnetocaloric properties. The system exhibits an inverse magnetocaloric effect (IMCE) around 175 K indicating presence of significant AFM correlation. The MCE study reveals a clear paramagnetic (PM) to ferromagnetic (FM) transition near room temperature (T ~ 325K) which is followed by onset of AFM at lower temperatures. The development of the FM-like magnetic state at low temperature is attributed to the enhanced double exchange (DE) driven ferromagnetism in AFM state as predicted by recent theoretical studies.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Colossal Magnetoresistive Oxides, edited by Tokura, Y. (Gordon and Breach Science Publishers, The Netherlands, 2000).Google Scholar
Phan, M. H., Yu, S. C., J. Magn. Magn. Mat., 308, 325 (2007)CrossRefGoogle Scholar
Biswas, Anis, Samanta, T., Banerjee, S., and Das, I., Appl. Phys. Lett., 92, 212502 (2008)CrossRefGoogle Scholar
Lampen, P., Puri, A., Phan, M. H. and Srikanth, Hariharan, J. Alloy. Comps. 512, 94 (2012)CrossRefGoogle Scholar
Biswas, Anis, Das, I., Mazumdar, C., J. Appl. Phys., 98, 124310 (2005)Google Scholar
Chandra, S., Figueroa, A. I., Ghosh, Barnali, Raychaudhuri, A. K., Phan, M. H., Mukherjee, P. and Srikanth, H., Physica B, 407, 175 (2012)CrossRefGoogle Scholar
Biswas, Anis, Das, I., Phys. Rev. B, 74, 172405 (2006)CrossRefGoogle Scholar
Sarkar, T., Ghosh, Barnali, Raychaudhuri, A. K., Phys. Rev.B, 77, 235112 (2008)Google Scholar
Biswas, Anis, Das, I., J. Appl. Phys., 102, 064303 (2007)CrossRefGoogle Scholar
Dong, S., Yu, R., Yunoki, S., Liu, J. M., Dagotto, E., Phys. Rev. B, 78, 064414 (2008)CrossRefGoogle Scholar
Rao, S. S., Anuradha, K., Sarangi, S., Bhat, S. V., Appl. Phys. Lett., 87, 182503 (2005).CrossRefGoogle Scholar
Dwivedi, V., Taraphder, A., Sol. Stat. Commn., 151, 1999 (2011)Google Scholar
Sarkar, T., Raychaudhuri, A. K., Bera, A. K. and Yusuf, S. M., New J. Phys., 12 123026 (2010)CrossRefGoogle Scholar
Sarkar, T., Venkata Kamalakar, M. and Raychaudhuri, A.K., New J. Phys., 14 033026 (2012)CrossRefGoogle Scholar
Zhu, D., Zhu, H., Zhang, Y. H., J. Phys.: Cond. Mat., 14, L519 (2002)Google Scholar
Zhang, T., Jin, C. G., Qian, T., Lu, X. L., Bai, J. M., Li, X. G., J. Mater. Chem., 14, 2787 (2004)CrossRefGoogle Scholar
Shantha Shankar, K., Kar, Sohini, Raychaudhuri, A.K. and Subbanna, G.N., Appl. Phys. Letts., 84, 993 (2004).Google Scholar
Shantha Shankar, K., Kar, Sohini and Raychaudhuri, A.K., Nanotech., 15, 1312 (2004)CrossRefGoogle Scholar
Phan, M. H., Chandra, S., Bingham, N. S., Srikanth, H., Zhang, C. L., Cheong, S. W., Hoang, T. D., and Chinh, H. D., Appl. Phys. Lett., 97, 242506 (2010)CrossRefGoogle Scholar
Biswas, Anis, Samanta, T., Banerjee, S, Das, I, J. Phys.: Cond. Mat., 21, 506005 (2009)Google Scholar
Biswas, Anis, Samanta, T., Banerjee, S, Das, I, Appl. Phys. Lett. 94, 233109 (2009)CrossRefGoogle Scholar
Rostamnejadi, A., venkatesan, M., Alaria, J., Boese, M., Kameli, P., Salamati, H., J. Appl. Phys., 110, 043905 (2011)CrossRefGoogle Scholar
Dhiman, I., Das, A., Mishra, P. K., Panicker, L., Phys. Rev. B, 77, 094440 (2008)CrossRefGoogle Scholar
Jirak, Z., Hejtmanek, J., Knmzek, K., Marysk, M., Smma, V., Sonntag, R., J. Magn. Magn. Mat., 217, 113 (2000)CrossRefGoogle Scholar
Podzorov, V., Kim, B. G., Kiryukhin, V., Gershenson, M. E., Cheong, S.-W., Phys. Rev B, 64, 140406 RCrossRefGoogle Scholar