Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T03:07:07.214Z Has data issue: false hasContentIssue false

Monte Carlo Simulation of Precipitate Nucleation and Growth: Time Dependent Results

Published online by Cambridge University Press:  28 February 2011

James P. Lavine
Affiliation:
Electronics Research Laboratories, Photographic Products Group, Eastman Kodak Company, Rochester, New York 14650
Gilbert A. Hawkins
Affiliation:
Electronics Research Laboratories, Photographic Products Group, Eastman Kodak Company, Rochester, New York 14650
Get access

Abstract

A three-dimensional Monte Carlo computer program has been developed to study the heterogeneous nucleation and growth of oxide precipitates during the thermal treatment of crystalline silicon. In the simulations, oxygen atoms move on a lattice with randomly selected lattice points serving as nucleation sites. The change in free energy that the oxygen cluster would experience in gaining or losing one oxygen atom is used to govern growth or dissolution of the cluster. All the oxygen atoms undergo a jump or a growth decision during each time step of the anneal. The growth and decay kinetics of each nucleation site display interesting fluctuation phenomena. The time dependence of the cluster size generally differs from the expected 3/2 power law due to the fluctuations in oxygen arrival at and incorporation in a precipitate. Competition between growing sites and coarsening are observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Russell, K. C., Adv. Colloid Interface Sci. 13, 205 (1980).CrossRefGoogle Scholar
2. Burton, J. J., in Modern Theoretical Chemistry, Vol. 5, Statistical Mechanics, Part A, edited by Berne, B. J. (Plenum Press, New York, 1977), ch. 6.Google Scholar
3. Kehr, K. W. and Binder, K., in Applications of the Monte Carlo Method in Statistical Physics, edited by Binder, K. (Springer-Verlag, Berlin, 1984), ch. 6.Google Scholar
4. Hu, S. M., J. Appl. Phys. 52, 3974 (1981).CrossRefGoogle Scholar
5. Craven, R. A., in Semiconductor Silicon 1981, edited by Huff, H. R., Kriegler, R. J., and Takeishi, Y. (The Electrochemical Society, Pennington, NJ, 1981), pp. 254271.Google Scholar
6. Yang, K., Carle, J., and Kleinhenz, R., J. Appl. Phys. 62, 4890 (1987).CrossRefGoogle Scholar
7. Rivaud, L., Anagnostopoulos, C. N., and Erikson, G. R., J. Electrochem. Soc. 135, 437 (1988).CrossRefGoogle Scholar
8. Voorhees, P. W. et al. , Acta Metall. 36, 207 (1988).CrossRefGoogle Scholar
9. Voorhees, P. W. and Glicksman, M. E., Acta Metall. 32, 2001 and 2013 (1984).CrossRefGoogle Scholar
10. Lavine, J. P. et al. , in Oxygen. Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J. C. Jr., Pearton, S. J., Corbett, J. W., and Pennycook, S. J. (Mater. Res. Soc. Proc. 59, Pittsburgh, PA, 1986), pp. 301307.Google Scholar
11. Marder, M., Phys. Rev. Lett. 52, 2953 (1985).CrossRefGoogle Scholar
12. Hawkins, G. A. and Lavine, J. P., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S. J., and Davies, G. (Mater. Res. Soc. Proc. 104, Pittsburgh, PA, 1988), pp. 197200.Google Scholar
13. Watkins, G. D., Corbett, J. W., and McDonald, R. S., J. Appl. Phys. 53, 7097 (1982).CrossRefGoogle Scholar
14. Turnbull, D. and Fisher, J. C., J. Chem. Phys. 17, 71 (1949).CrossRefGoogle Scholar
15. Katz, J. L. and Wiedersich, H., J. Colloid Interface Sci. 1, 351 (1977).CrossRefGoogle Scholar
16. Katz, J. L. and Spaepen, F., Phil. Mag. B 37, 137 (1978).CrossRefGoogle Scholar
17. Ham, F. S., J. Phys. Chem. Solids 6, 335 (1958).CrossRefGoogle Scholar
18. Russell, K. C., Acta Metall. 16, 761 (1968).CrossRefGoogle Scholar
19. Lavine, J. P., Taras, R. J., and Hawkins, G. A., this Proceedings.Google Scholar