Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T13:55:00.146Z Has data issue: false hasContentIssue false

Molecular-Scale Structure of Pentacene Interfaces with Si (111)

Published online by Cambridge University Press:  26 February 2011

Soonjoo Seo
Affiliation:
[email protected], University of Wisconsin-Madison, Materials Science, 1509 University Ave., Madison, WI, 53706, United States, (608)263-2768, (608)262-8353
Paul G. Evans
Affiliation:
[email protected], University of Wisconsin-Madison, Materials Science and Engineering, 1509 University Ave., Madison, WI, 53706, United States
Get access

Abstract

The morphology and crystal structure of the first few molecular layers of organic semiconductor thin films at organic-inorganic interfaces are important from both electronic and structural perspectives. The first upright layer of pentacene on Si (111) forms on top of a disordered layer of strongly bonded pentacene molecules in a structure similar to the pentacene monolayers formed on insulators. We describe a high-resolution structural study of this crystalline phase of pentacene using low-temperature scanning tunneling microscopy (STM). The arrangement of molecules in these layers observed with STM agrees the results of with structural studies using scattering techniques. The imaging conditions and sample preparation techniques necessary to achieve molecular resolution can be adapted to subsequent STM and scanning tunneling spectroscopy experiments probing individual structural defects including vacancies, dislocations and grain boundaries within and between islands.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Street, R. A., Northrup, J. E., and Salleo, A., Phys. Rev. B 71, 165202 (2005).Google Scholar
2. Tsiaousis, D. and Munn, R. W., J. Chem. Phys. 117, 1833 (2002).Google Scholar
3. Liao, J. and Martin, D. C., Macromolecules 29, 568 (1996).Google Scholar
4. Bolognesi, A., Berliocchi, M., Manenti, M., Carlo, A. Di, Lugli, P., Lmimouni, K., and Dufour, C., IEEE Trans. Elect. Dev. 51, 1997 (2004).Google Scholar
5. Watkins, N. J. and Gao, Y., J. Appl. Phys. 94, 5782 (2003).Google Scholar
6. Nickel, B., Barabash, R., Ruiz, R., Koch, N., Kahn, A., Feldman, L. C., Haglund, R. F., and Scoles, G., Phys Rev. B 70, 125401 (2004).Google Scholar
7. Edura, T., Takahashi, H., Nakata, M., Onozato, H., Mizuno, J., Tsutsui, K., Haemori, M., Itaka, K., Koinuma, H., and Wada, Y., Jpn. J. Appl. Phys. 45, 3708 (2006).Google Scholar
8. Dimitrakopoulos, C. D., et al., Adv. Mat. 11, 99 (1999).Google Scholar
9. Eremtchenko, M., Temirov, R., Bauer, D., Schaefer, J. A., and Tautz, F. S., Phys Rev. B 72, 115430 (2001).Google Scholar
10. Gavioli, L., Fanetti, M., Sancrotti, M., and Betti, M. G., Phys Rev. B 72, 035458 (2005).Google Scholar
11. Hughes, G., Roche, J., Carty, D., and Cafolla, T., J. Vac. Sci. Technol. B 20, 1620 (2002).Google Scholar
12. Ruiz, R., Nickel, B., Koch, N., Feldman, L. C., Haglund, R. F., Kahn, A., and Scoles, G., Phys. Rev. B 67, 125406 (2003).Google Scholar
13. Heringdorf, F.-J. Meyer zu, Reuter, M. C., and Tromp, R. M., Nature 412, 517 (2001).Google Scholar
14. Tersigni, A., Shi, J., Jiang, D. T., and Qin, X. R., Phys. Rev. B 74, 205326 (2006).Google Scholar
15. Kubatkin, S., Danilov, A., Hjort, M., Cornil, J., Bredas, J.-L., Stuhr-Hansen, N., Hedgegard, P., and Bjornholm, T., Nature 425, 698 (2003).Google Scholar
16. Kern, W. and Puotien, D. A., RCA Rev. 31, 187 (1970).Google Scholar
17. Choudhary, D., Clancy, P., and Bowler, D. R., Surf. Sci. 578, 20 (2005).Google Scholar
18. Kasaya, M., Tabata, H., and T, Kawai, Surf. Sci. 400, 367 (1998).Google Scholar
19. Fritz, S. E., Martin, S. M., Frisbie, C. D., Ward, M. D., and Toney, M. F., J. Am. Chem. Soc. 126, 4084 (2004).Google Scholar
20. Hamers, R. J., Coulter, S. K., Ellison, M. D., Hovis, J. S., Padowitz, D. F., Schwartz, M. P., Greenlief, C. M., and Russell, J. N., Acc. Chem. Res. 33, 617 (2000).Google Scholar
21. Heringdorf, F.-J. Meyer zu, Reuter, M. C., and Tromp, R. M., Appl. Phys. A 78, 787 (2004).Google Scholar