Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:29:24.681Z Has data issue: false hasContentIssue false

Molecular Dynamics Study of Commensurate-Incommensurate Phases in Hexamethylenetetramine Suberate

Published online by Cambridge University Press:  01 February 2011

Yuansheng Pan
Affiliation:
Université de Lausanne, Institut de cristallographie, BSP Dorigny, 1015 Lausanne, Switzerland
David Brown
Affiliation:
Laboratoire des Matériaux Organiques à Propriétés Spécifiques, UMR CNRS 5041, Université de Savoie, 73376 Le Bourget du Lac, France
Gervais Chapuis
Affiliation:
Université de Lausanne, Institut de cristallographie, BSP Dorigny, 1015 Lausanne, Switzerland
Get access

Abstract

Incommensurate structure of Hexamethylenetetramine suberate (C6H12N4)(HOOC-(CH2)6-COOH) has been solved from single crystal x-ray diffraction data. A molecular dynamics simulation of this system was carried out from 15 K to 580K. A second-generation consistent forcefield (CFF) and a compensating pressure tensor field were used to describe the interactions between atoms and to account for deficiencies in the forcefield. Starting from the experimental 298K structure, the phase transitions were investigated over an extended temperature range. A high symmetry commensurate structure exists at temperatures between 410K and 290K. For temperatures lower than 290K, a new periodicity appears in the structure. The system reaches a low symmetry lock-in phase at about 150K. An incommensurate structure appears between the high and low symmetry phases between 290K and 150K. The new periodicity associated with the incommensurate modulation is due to the appearance of additional long range ordering of the carbon chains. The present simulation not only reproduces well the experimental x-ray diffraction results but also gives new insight into the origin of the incommensurate behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Janssen, T. and Janner, A., Advances in Physics 36, 519624(1987).Google Scholar
[2] Yamamoto, A., Acta Cryst - A 52,509560(1996).Google Scholar
[3] Pimenta, M. A. & Licinio, P., Phys. Rev. B 50, 722726 (1994).Google Scholar
[4] Luk'yanchuk, I., Jorio, A. and Pimenta, M. A., Phys. Rev. B (1994) 57, 50865092.Google Scholar
[5] Parlinski, K. Chapuis, G., Phys. Rev. B 47, 13983–1399 (1993).Google Scholar
[6] Parlinski, K. Chapuis, G. Phys. Rev. B, 49, 1164311651 (1994).Google Scholar
[7] Gaillard, V. B., Paciorek, W., Schenk, K., and Chapuis, G., Acta Cryst. - B 52, 10361047 (1996).Google Scholar
[8] Gaillard, V. B., Chapuis, G., Dusek, M., and Petricek, V., Acta Crystallographica - A - 54, 3143 (1998).Google Scholar
[9] Brown, D., Minoux, H. and Maigret, B., Comp. Phys. Comm., 103, 170186, (1997).Google Scholar
[10] Hwang, M.-J., Stockfisch, T. P. and Hagler, A. T., J. Amer. Chem. Sco., 116, 25152525 (1994).Google Scholar
[11] Cerius2. Molecular Simulations, San Diego (1997).Google Scholar
[12] Rappé, A. K.; Goddard, W.A., J. Phys. Chem., 95, 3358 (1991).Google Scholar
[13] Pan, Y., Brown, D. and Chapuis, G., “Molecular dynamics simulationof hexamine (HMT) and suberic acid”, (accepted by Molecular Simulation).Google Scholar
[14] Proffen, Th. and Neder, R. B., J. Appl. Cryst., 30:171175 (1997).Google Scholar
[15] Chapuis, G., Cryst. Rev. (1996) 5, 109131.Google Scholar