Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T07:55:21.997Z Has data issue: false hasContentIssue false

Molecular Dynamics and Relaxation Methods in the Stability Calculations for the Study of Distortions of Confined Nematic Liquid Crystals

Published online by Cambridge University Press:  21 March 2011

A. Calles
Affiliation:
Departamento de Fí–sica, Facultad de Ciencias, UNAM Apdo. Postal 70-646, 04510 Mé, D.F.
R.M. Valladares
Affiliation:
Departamento de Fí–sica, Facultad de Ciencias, UNAM Apdo. Postal 70-646, 04510 Mé, D.F.
J.J. Castro
Affiliation:
.On sabbatical leave from Departamento de Fí–sica, CINVESTAV del IPN Apdo. Postal 14-740, 07300 México, D.F.
Get access

Abstract

We present a calculation using a relaxation method for the study of the orientational ordering of a nematic liquid crystal near the surfaces confining the system. We comment on the advantage of using this method as compared with molecular dynamics simulation. The system is simulated by a lattice model with a superposition of isotropic and anisotropic intermolecular interaction of the Maier-Saupe and induced dipole-induced dipole type force for the bulk nematic phase. For the nematic confining surface we consider a Rapini-Papoular interaction. We present simulations for negative dielectric anisotropy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bryan-Brown, G. P., Brown, C. V., Sage, I. C. and Hui, V. C., Nature, 392, 365 (1998).Google Scholar
2. Bryan-Brown, G. P., Wood, E. L. and Sage, I. C., Nature, 399, 338 (1999).Google Scholar
3. Skaèej, G., Pergamenshchik, V. M., Alexe-Ionescu, A. L., Barbero, G. and Žumer, S., Phys. Rev. E56, 571 (1997).Google Scholar
4. Barbero, G., Evangelista, L.R. and Madhusudana, N. V., Eur. Phys. J. B1, 327 (1998).Google Scholar
5. Rajteri, M., Barbero, G., Galatola, P., Oldano, C. and Faetti, S., Phys. Rev. E53, 6093 (1996).Google Scholar
6. Maier, W. and Saupe, A., Z. Naturforsch. A14, 882 (1959); A15, 287 (1960).Google Scholar
7. Rapini, A. and Papoular, M., J. Phys. (France), Colloq. 30, C454 (1969).Google Scholar