Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T15:58:16.177Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxial Growth and Dielectric Characterization of Ba0.6Sr0.4TiO3 Films

Published online by Cambridge University Press:  26 February 2011

P. Fisher
Affiliation:
[email protected], Carnegie Mellon University, Materials Science and Engineering, Pittsburgh, PA, 15213, United States
M. Skowronski
Affiliation:
[email protected], Carnegie Mellon University, Materials Science and Engineering, Pittsburgh, PA, 15213, United States
P. A. Salvador
Affiliation:
[email protected], Carnegie Mellon University, Materials Science and Engineering, Pittsburgh, PA, 15213, United States
M. Snyder
Affiliation:
[email protected], Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, United States
J. Xu
Affiliation:
[email protected], Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, United States
M. Lanagan
Affiliation:
[email protected], Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, United States
O. Maksimov
Affiliation:
[email protected], Pennsylvania State University, Electro-Optics Center, 559A Freeport Rd., Freeport, PA, 16229, United States
V. D. Heydemann
Affiliation:
[email protected], Pennsylvania State University, Electro-Optics Center, 559A Freeport Rd., Freeport, PA, 16229, United States
Get access

Abstract

Ba0.6Sr0.4TiO3 films were grown by molecular beam epitaxy on MgO(001) and LaAlO3(001) substrates. The growth mode was determined to be two-dimensional by in-situ reflection high-energy electron diffraction. The films were structurally and dielectrically characterized ex-situ using X-ray diffraction, Rutherford backscattering spectrometry, and split cavity resonance mode dielectrometry. The structural and dielectric properties of the Ba0.6Sr0.4TiO3 film grown on MgO were determined to be inferior to the film grown on LaAlO3, as was indicated by the broader rocking curve (0.59 deg. vs. 0.17 deg.) and higher dielectric loss (0.29 vs. 0.12).

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Qadri, S.B., Horwitz, J.S., Chrisey, D.B., Auyeung, R.C.Y., Knauss, L.A., Surf. Coat. Technol. 76, 348 (1995).Google Scholar
[2] Gevorgian, S., Kollberg, E., IEEE Trans. Microw. Theory Tech. 49, 2117 (2001).Google Scholar
[3] Popovici, D., Noda, M., Okuyama, M., Sasaki, Y., Komaru, M., J. Eur. Ceram. Soc. 26, 1879 (2006).Google Scholar
[4] Kirchoefer, S.W., Pond, J.M., Carter, A.C., Chang, W., Agarwal, K.K., Horwitz, J.S., Chrisey, D.B., Microwave Opt. Technol. Lett. 18, 168 (1998).Google Scholar
[5] Liu, Y., Erker, E., Periaswamy, P., Taylor, T., Speck, J., York, R., IEEE Microwave Guided Wave Lett. 10, 448 (2000).Google Scholar
[6] Zhu, X., Deng, Q., Yong, L., He, Y., Cheng, B., Zheng, D., J. Phys. D: Appl. Phys. 39, 2282 (2006).Google Scholar
[7] Tahan, D., Safari, A., Klein, L., J. Am. Ceram. Soc. 79, 1593 (1996).Google Scholar
[8] Horikawa, T., Mikami, N., Makita, T., Tanimura, J., Kataoka, M., Sato, K., Nunoshita, M., Jap. J. Appl. Phys., Part 1 32, 4126 (1993).Google Scholar
[9] Chern, C.S., Liang, S., Shi, Z.Q., Yoon, S., Safari, A., Lu, P., Kear, B.H., Goodreau, B.H., Marks, T.J., Hou, S.Y., Appl. Phys. Lett. 64, 3181 (1994).Google Scholar
[10] Xinghua, F., Lianwei, S., Biyan, D., Wenping, H., Zhou, F., Zhengyi, F., Bull. Mater. Sci. 27, 433 (2004).Google Scholar
[11] Li, H., Finder, J., Liang, Y., Gregory, R., Qin, W., Appl. Phys. Lett. 87, 072905 (2005).Google Scholar
[12] Kent, G., IEEE Trans. Micro. Theory Tech. 36, 1451 (1988).Google Scholar
[13] Leca, V., Rjinders, G., Koster, G., Blank, D.H.A., Rogalla, H., Mater. Res. Soc. Symp. Proc. 587, O3.6.1 (2000).Google Scholar
[14[ Fisher, P.J., Maksimov, O., Du, H., Heydemann, V., Skowrosnki, M., Salvador, P., Microelectron. J. 37, 1493 (2006).Google Scholar
[15[ Asthagiri, A., Niederberger, B., Francis, A., Porter, L., Salvador, P., Sholl, D., Surf. Sci. 537, 134 (2003).Google Scholar
[16[ Yu, Z., Liang, Y., Overgaard, C., Hu, X., Curless, J., Li, H., Wei, Y., Craigo, B., Jordan, D., Droopad, R., Finder, J., Eisenbeiser, K., Marshall, D., Moore, K., Kulik, J., Fejes, P., Thin Solid Films 462, 51 (2004).Google Scholar
[17[ Krupka, J., Geyer, R. G., Kuhn, M., Hinken, J. H., IEEE Trans. Microw. Theory Tech. 42, 1886 (1994).Google Scholar
[18[ Carlson, C., Rivkin, T., Parilla, P., Perkins, J., Ginley, D., Kozyrev, A., Oshadchy, V., Pavlov, A., Appl. Phys. Lett. 76, 1920 (2000).Google Scholar