Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T04:20:34.086Z Has data issue: false hasContentIssue false

Moisture Induced Degradation of Porous Low-k Materials

Published online by Cambridge University Press:  01 February 2011

Mikhail Baklanov
Affiliation:
[email protected], IMEC, AMPS, Kapeldreef 75, Leuven, N/A, B-3001, Belgium, +32 16 281 606, +32 16 281 214
David O'Dwyer
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, N/A, B-3001, Belgium
Adam M Urbanowicz
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, N/A, B-3001, Belgium
Quoc Toan Le
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, N/A, B-3001, Belgium
Steven Demuynck
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, N/A, B-3001, Belgium
Eun Kee Hong
Affiliation:
[email protected], Assignee at IMEC from SAMSUNG Electronics, Kapeldreef 75, Leuven, N/A, B-3001, Belgium
Get access

Abstract

Interaction of moisture with porous low-k films is evaluated by using in situ ellipsometry setup. The adsorbed water amount is calculated from change of refractive index measured during the adsorption. Pristine low-k films reversibly adsorb 2 - 5% of water that reflects presence of constitutive hydrophilic centrums. Plasma and thermal treatments increase the number of hydrophilic centrums. Once the amount of these centrums has reached a certain critical value sufficient to form a continuous water film, bulk water condensation is observed. Change of properties during the water adsorption in the damaged films is not fully reversible. Each additional adsorption cycle increases the dielectric function of the film because of decreasing porosity, increasing skeleton density and shrinkage. The pressure corresponding to the bulk condensation allows us to calculate internal contact angle (internal surface energy) of low-k materials. The water molecules adsorbed on separate OH groups play the role of a catalyst that hydrolyses the siloxane bridges initially present on hydrophobic surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Maex, K., Baklanov, M. R., Shamiryan, D., Iacopi, F., Brongersma, S. and Yanovitskaya, Z. Sh., J. Appl. Phys. 93, 8793 (2003).Google Scholar
2 Baklanov, M. R., Travaly, Y., Le, Q. T., Shamiryan, D. and Vanhaelemeersch, S., In: Silicon Nitride, Silicon Dioxide, Thin Insulating Films and Other Emerging Dielectrics YIII”, Ed. Sah, R.E., Deen, M. J., Zhang, J. F., Yota, J., Kamakura, Y.. ECS, PV 2005–01, pp. 179198.Google Scholar
3 Shamiryan, D., Baklanov, M. R., Vanhaelemeersch, S., and Maex, K., J. Vac. Sci. Technol. A20, 1923 (2002).Google Scholar
4 Guyer, E. P. and Dauskardt, R. H.. J. Mater. Res., 20, 680 (2005).Google Scholar
5 Baklanov, M. R., Mogilnikov, K. P. and Le, T. Q., Microelectronic Eng., to be published.Google Scholar
6 Baklanov, M. R., Mogilnikov, K. P., Polovinkin, V. G. and Dultsev, F. N., J.Vac.Sci.Technol. B18, 1385 (2000).Google Scholar
7 Baklanov, M. R. and Mogilnikov, K. P., Microelectronic Eng., 64 (1/4), 335(2002).Google Scholar
8 Ohba, T., Kanoh, H., and Kaneko, K.. Nanoletters, 5(2), 227 (2005).Google Scholar
9 Wu, W., Wallace, W. E., Lin, E., Lynn, G. W., Glinka, C. J., Ryan, R. T. and Ho, H., J. Appl. Phys., 87, 1193 (2000).Google Scholar
10 Hedden, R. C., Lee, H-J., Soles, C. L. and Bauer, B. J.. Langmuir, 20, 6658 (2004).Google Scholar
11 Demuynck, S., Hong, E., Le, Q.T., Baklanov, M.R., Hove, M. Van and Lee, J.M.. AMC 2005 Proceedings, pp.1213, 2005.Google Scholar
12 Mogilnikov, K. P., Baklanov, M. R.. Electrochem.Sol.St. Lett., 5, n.12 (2002).Google Scholar
13 Prigogine, M. and Fripiat, J. J.. Bull. Soc. Roy. Sci. Liege, 7–10, 449, (1974).Google Scholar