Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T10:32:06.842Z Has data issue: false hasContentIssue false

Modified Polylactide Microfiber Scaffolds for Tissue Engineering

Published online by Cambridge University Press:  20 March 2012

R. Vera-Graziano*
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510, Distrito Federal, México.
A. Maciel-Cerda
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510, Distrito Federal, México.
E.V. Moreno-Rondon
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510, Distrito Federal, México.
A. Ospina
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510, Distrito Federal, México.
E.Y. Gomez-Pachon
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510, Distrito Federal, México.
*
*Corresponding author e-mail: [email protected]
Get access

Abstract

Physical properties of porous membranes made of biocompatible and biodegradable polymers have been studied. The membranes are intended to be used as scaffolds for the regeneration of soft and hard tissues. Polylactides, polycaprolactone and some of their derivates are biocompatible as well as biodegradable materials, and are used for the preparation of nanofibers and nanoporous membranes. These membranes also have comparative advantages as cellular scaffolds for tissue engineering since they can be prepared to mimic the morphology of the extra cellular matrix.

Chemical, physical, and biological properties of microfibers and scaffolds of polylactic acid (PLLA), as well as PLLA modified with hydroxyapatite nanoparticles and collagen (Col) are reported in this paper. The microfibers and the scaffolds were prepared by electrospinning. Morphology, diameter and porosity of the scaffold were determined by scanning electron microscopy and an image analyzer program. The microfibers are semicrystalline showing a shell of crystalline nanofibrils. The diameter of the fibers varied between 100 and 800 nm and the porous area of the membrane is between 60 and 80%. The mechanical properties of the microfibers and scaffolds were evaluated by microtensile tests and their behavior was simulated by using an original multiscale asymptotic homogenization model. Cultures of mesenchymal stem cells were used to evaluate their biological activity. Cell adhesion was observed in the modified PLLA scaffolds with grafted hydroxyapatite.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shin, H., Jo, S., and Mikos, A. G., Biomaterials 24, 4353 (2003).Google Scholar
2. Garcia De Gregorio, G., Lopez-Caballos, E., Castro, R.M., European Polymer Journal 41, 2416 (2005).Google Scholar
3. Yang, X., Yuan, M., Li, W., and Zhang, G., Journal of Applied Polymer Science 94, 1670 (2004).Google Scholar
4. Qiu, X., Chen, L., Hu, J., Sun, J., Hong, Z., Liu, A., Chen, X. and Jing, X., Journal of Polymer Science, Part A: Polymer. Chemistry 43, 5177 (2005).Google Scholar
5. Qiu, X., Hong, Z., Hu, J., Chen, L., Chen, X. and Jing, X., Biomacromolecules 6, 1993 (2004).Google Scholar
6. Xiao, Y., Li, D., Fan, H., Li, X., Gu, Z., and Zhang, X., Materials Letters 61, 59 (2007).Google Scholar
7. Gómez-Pachón, E.Y., Sabina, F.J., Vera-Graziano, R., Modelamiento de nanofibrillas en nanofibras; método de homogeneización asintótica, Memorias del XXXIV Congreso Nacional de Ingeniería Biomédica, Ixtapa, Zihuatanejo, México, (2011).Google Scholar
8. Mani, R., Bhattacharya, M., and Tang, J., Journal of Polymer Science, Part A: Polymer. Chemistry 37, 1963 (1999).Google Scholar
9. Ospina, A., Master Thesis, Universidad Nacional Autónoma de México, 2011.Google Scholar
10. Gómez-Pachón, EY, Montiel-Campos, R, Moreno-Rendón, EV, Vera-Graziano, R, Diseño de un equipo para la fabricación de de andamios de nanofibras para aplicaciones biomédicas, Memorias del XVI Congreso Internacional Anual SOMIM, pp 1 a 10, ISBN: 978-607-95309-3-8, México, (2010).Google Scholar
11. Voigt, W., Abh.Kgl.Ges.Wiss.Göttingen, Math.Kl. 34, 351 (1887).Google Scholar
12. Reuss, A., Journal of Applied Mathematics and Mechanics 9, 49(1929).Google Scholar
13. Moreno-Rondon, E., Master Thesis, Universidad Nacional Autónoma de México, 2011.Google Scholar