Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T05:14:27.701Z Has data issue: false hasContentIssue false

Modification of Blinking Statistics in Solid State Quantum Dot/Conjugated Organic Polymer Composite Nanostructures

Published online by Cambridge University Press:  01 February 2011

Nathan I Hammer
Affiliation:
[email protected], University of Massachusetts, Chemistry, 710 North Pleasant, Amherst, MA, 01003, United States
Kevin T Early
Affiliation:
[email protected], University of Massachusetts, Chemistry, 710 North Pleasant, Amherst, MA, 01003, United States
Michael Y Odoi
Affiliation:
[email protected], University of Massachusetts, Chemistry, 710 North Pleasant, Amherst, MA, 01003, United States
Ravisubhash Tangirala
Affiliation:
[email protected], University of Massachusetts, Polymer Science & Engineering, Conte Center for Polymer Research, Amherst, MA, 01003, United States
Kevin Sill
Affiliation:
[email protected], University of Massachusetts, Polymer Science & Engineering, Conte Center for Polymer Research, Amherst, MA, 01003, United States
Todd Emrick
Affiliation:
[email protected], University of Massachusetts, Polymer Science & Engineering, Conte Center for Polymer Research, Amherst, MA, 01003, United States
Michael D Barnes
Affiliation:
[email protected], University of Massachusetts, Chemistry, 710 North Pleasant, Amherst, MA, 01003, United States
Get access

Abstract

Fluorescence intermittency, or “blinking” in quantum dot systems has been the subject of great interest since the first observation of this phenomenon nearly 10 years ago. The stability of quantum dot fluorescence emission is especially important in the context of photovoltaic, optoelectronic, and biological applications, where device performance, or the ability to track labeled particles, is affected adversely by fluorescence intermittency. Single-molecule spectroscopy combined with atomic force microscopy measurements reveal that CdSe quantum dots functionalized with oligo(phenylene vinylene), OPV, ligands exhibit modified optical properties such as suppression of blinking when compared to conventional TOPO covered or ZnS-capped CdSe quantum dots. The blinking suppression is shown to be highly sensitive to the degree of ligand coverage on the quantum dot surface and this effect is interpreted as resulting from charge transport from photoexcited OPV into vacant trap sites on the quantum dot surface. This direct surface derivatization of quantum dots with organic ligands also enables a “tunable” quantum dot surface that allows dispersion of quantum dots in a variety of polymer supported thin films without phase segregation. This facilitates straightforward inclusion of these new hybrid materials into solid state formats and suggests exciting new applications of composite quantum dot/organic systems in optoelectronic systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nirmal, M., Dabbousi, B. O., Bawendi, M. G., Macklin, J. J., Trautman, J. K., Harris, T. D., and Brus, L. E., Nature 383, 802 (1996).Google Scholar
2. Efros, A. L. and Rosen, M., Phys. Rev. Lett. 78, 1110 (1997).Google Scholar
3. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A., and Nesbitt, D. J., J. Chem. Phys. 112, 3117 (2000).Google Scholar
4. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P., Nature 370, 354 (1994).Google Scholar
5. Mattoussi, H., Radzilowski, L. H., Dabbousi, B. O., Thomas, E. L., Bawendi, M. G., and Rubner, M. F., J. Appl. Phys. 83, 7965 (1998).Google Scholar
6. Lee, J., Sundar, V. C., Heine, J. R., Bawendi, M. G., and Jensen, K. F., Adv. Mater. 12, 1102 (2000).Google Scholar
7. Coe, S., Woo, W. K., Bawendi, M., Bulovic, V., Nature 420, 800 (2002).Google Scholar
8. Tessler, N., Medvedev, V., Kazes, M., Kan, S. H., and Banin, U., Science 295, 1506 (2002).Google Scholar
9. Woo, W. K., Shimizu, K. T., Jarosz, M. V., Neuhauser, R. G., Leatherdale, C. A., Rubner, M. A., and Bawendi, M. G., Adv. Mater. 14, 1068 (2002).Google Scholar
10. Gur, I., Fromer, N. A., Geier, M. L., and Alivisatos, A. P., Science 310, 462 (2005).Google Scholar
11. Zhang, C. Y., Yeh, H. C., Kuroki, M. T., and Wang, T. H., Nat. Mater. 4, 826 (2005).Google Scholar
12. Hohng, S. and Ha, T., J. Am. Chem. Soc. 126, 1324 (2004).Google Scholar
13. Biebricher, A., Sauer, M., and Tinnefeld, P., J. Phys. Chem. B 110, 5174 (2006).Google Scholar
14. Skaff, H., Sill, K., and Emrick, T., J. Am. Chem. Soc. 126, 11322 (2004).Google Scholar
15. Odoi, M. Y., Hammer, N. I., Sill, K., Emrick, T., and Barnes, M. D., J. Am. Chem. Soc. 128, 3506 (2006).Google Scholar
16. Mehta, A., Thundat, T., Barnes, M. D., Chhabra, V., Bhargava, R., Bartko, A. P., and Dickson, R. M., Appl. Opt. 42, 2132 (2003).Google Scholar