No CrossRef data available.
Article contents
Modelling the Mechanical and Thermal Properties of Cellular Materials from the Knowledge of their Architecture
Published online by Cambridge University Press: 31 January 2011
Abstract
This paper shows different examples where the architecture of cellular materials has been determined exactly using 3D X ray computed tomography. The images were then subsequently used to generate FE meshes reproducing the architecture as exactly as possible. The FE meshes where in turn used to simulate the mechanical (monotonous and fatigue compression) and the thermal (radiative properties) behavior of the studied materials.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2009
References
1
Buffière, J.Y., Maire, E., Cloetens, P., Lormand, G., R. Fougères, Acta Mater,. 47, 1613 (1999).10.1016/S1359-6454(99)00024-5Google Scholar
2
Maire, E., Buffière, J.Y., Salvo, L., Blandin, J.J., Ludwig, W., Létang, J.M., Advanced Engineering Materials,
3, 539 (2001).10.1002/1527-2648(200108)3:8<539::AID-ADEM539>3.0.CO;2-63.0.CO;2-6>Google Scholar
3
Olurin, O.B., Arnold, M., Körner, C., Singer, R.F., Mat. Sc. Eng, A328, 334, (2002).10.1016/S0921-5093(01)01809-3Google Scholar
4. Elmoutaouakkil, A., Peyrin, F., Fuchs, G., “Proceedings of 7 ème Journée de la Matière Condensée de la Société Française de Physique”, 645, (2000).Google Scholar
5
Degisher, H.P., Kottar, A., Foroughi, F., In “X-Ray Tomography in Material Science”, ed. Baruchel, , Buffière, , Maire, , Merle, , Peix, , Ed. Hermes, Paris, 165, (2000).Google Scholar
6
Müller, R., Bösch, T., Jarak, D., Stauber, M., Nazarian, A., Tantillo, M., Boyd, S., “Proceedings of the SPIE, Developments in X-ray Tomography III, edited by Bonse, U., San Diego, 4503, 189, (2001).Google Scholar
7
Elliott, J.A., Windle, A.H., Hobdel, J.R., Eeckhaut, G., Oldman, R.J., Ludwig, W., Boller, E., Cloetens, P., Baruchel, J., J. Mat. Science.
37, 1547, (2002).10.1023/A:1014920902712Google Scholar
8
Gibson, L.J., Ashby, M.F., “Cellular Solids: Structure and Properties”, Cambridge, UK: Cambridge Univ. Press, 2nd ed. (1997).10.1017/CBO9781139878326Google Scholar
9
Roberts, A.P., Garboczi, E.J., Acta Mater.
49, 189 (2001).10.1016/S1359-6454(00)00314-1Google Scholar
10
Ulrich, D., Rietbergen, B. Van, Weinans, H., Ruegsegger, P., J. Biomech.
31, 1187 (1998).10.1016/S0021-9290(98)00118-3Google Scholar
11
Youssef, S., Maire, E., Gaertner, R., Acta Mater.
53, 719 (2005).10.1016/j.actamat.2004.10.024Google Scholar
12
Madi, K., Forest, S., Boussuge, M., Gailliègue, S., Lataste, E., Buffière, J.-Y., Bernard, D., Jeulin, D., Comput. Mater. Sci.
39, 224 (2007).10.1016/j.commatsci.2006.01.033Google Scholar
13
Elliott, J.A., Windle, A.H., Hobdel, J.R., Eeckhaut, G., Oldman, R.J., Ludwig, W., Boller, E., Cloetens, P., Baruchel, J., J. Mater. Sci.
37, 1547 (2002).10.1023/A:1014920902712Google Scholar
14
Onck, P.R., Merkerk, R. van, Hosson, J.T.M. De, Schmidt, I., Adv. Eng. Mater.
6, 6 (2004).10.1002/adem.200405156Google Scholar
15
Caty, O., Maire, E., Bouchet, R.. Acta Mater.
56, 5524, (2008).10.1016/j.actamat.2008.07.023Google Scholar
16
Liang, Z., Ionnidis, M.A., Chatzis, I., Journal of Colloïd and Interface Sciences, 221, 13, (2000).10.1006/jcis.1999.6559Google Scholar
17http://www.tgs.com/support/amira_doc/Documentation/amira41UsersGuide.pdf 18. ABAQUS, Finite element program theory manual, (1998)Google Scholar
19
Maire, E., Colombo, P., Adrien, J., Babout, L., Biasetto, L., Journal of the European Ceramic Society
27, 1973, (2007).10.1016/j.jeurceramsoc.2006.05.097Google Scholar
20
Lee, W-S., Lin, C-F., Liu, T-J., Material Characterization.
58, 363, (2007).10.1016/j.matchar.2006.06.004Google Scholar
21
Coquard, R., Loretz, M., Baillis, D.. Conductive Heat Transfer in Metallic/Ceramic Open-Cell Foams. Adv engng mater.
10, 323, (2008).Google Scholar