Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T19:02:07.688Z Has data issue: false hasContentIssue false

Modeling Relations Between the Composition and Properties of French Light Water Reactor Waste Containment Glass

Published online by Cambridge University Press:  15 February 2011

D. Ghaleb
Affiliation:
Commissariat à l’Energie Atomique, Rhône Valley Research Center, BP 171, 30200 Bagnols-sur-Cèze Cedex, France
J. L. Dussossoy
Affiliation:
Commissariat à l’Energie Atomique, Rhône Valley Research Center, BP 171, 30200 Bagnols-sur-Cèze Cedex, France
C. Fillet
Affiliation:
Commissariat à l’Energie Atomique, Rhône Valley Research Center, BP 171, 30200 Bagnols-sur-Cèze Cedex, France
F. Pacaud
Affiliation:
Commissariat à l’Energie Atomique, Rhône Valley Research Center, BP 171, 30200 Bagnols-sur-Cèze Cedex, France
N. Jacquet-Francillon
Affiliation:
Commissariat à l’Energie Atomique, Rhône Valley Research Center, BP 171, 30200 Bagnols-sur-Cèze Cedex, France
Get access

Abstract

Models have been developed to calculate the density, molten-state viscosity and initial corrosion rate according to the chemical composition of glass formulations used to vitrify high-level fission product solutions from reprocessed light water reactor fuel. Developed from other published work, these models have been adapted to allow for the effects of platinoid (Ru, Pd, Rh) inclusions on the molten glass rheology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scholze, H., Le Verre: nature, structure et propriçtçs (“Glass: Nature. Structure and Properties”), Institut du Verre (The Glass Institute), Paris (1980).Google Scholar
2. Feng, X. and Barkatt, A., Mat. Res. Soc. Proc., 112, p. 543 (1988).Google Scholar
3. Jantzen, C.M., Advances in Ceramics, 20, p. 703 (1987).Google Scholar
4. Jantzen, C.M. and Plodinec, M.J., Report No DPST-86-372, Savannah River Laboratory (1986).Google Scholar
5. Piepel, G.F., Hrma, P.R., Bates, S.O., Scheiger, M.J. and Smith, D.E., Report No PNL-8502, Battelle (1993).Google Scholar
6. Pacaud, F., Fillet, C. and Jacquet-Francillon, N., in Scientific Basis for Nuclear Waste Management XV, 257, ed. Sombret, C., p. 161.Google Scholar
7. Sacchi, M., Antonini, M. and Prudenziati, M., Phys. Stat. Sol. (a) 109 p. K23 (1988).Google Scholar
8. Krauze, C. and Luckscheiter, B., J. Mater. Res. 6 (12), p. 2535 (1991).Google Scholar
9. Pacaud, F., Fillet, C. and Baudin, G., 2nd International Seminar on radioactive Waste Products, Jülich, Germany (1990).Google Scholar
10. Pacaud, F., Jacquet-Francillon, N., Terki, A. and Fillet, C., in Scientific Basis for Nuclear Waste Management XII, 127, ed. W. Lutze and R. Ewing, p. 105.Google Scholar
11. The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, 11 (2) (1982).Google Scholar
12. Firth, B.A. and Hunter, R.J., J. Colloid Interface Science, 57 (2) p. 248 (1976).Google Scholar
13. Tovena, I., Advocat, T., Ghaleb, D., Vernaz, E. and Larché, F., in Scientific Basis for Nuclear Waste Management, 133, p. 595, (1994).Google Scholar
14. Plodinec, M.J., Advances in Ceramics, 20, p. 117 (1986).Google Scholar
15. Puyou, M., N. Jacquet-Francillon J. P. Moncouyoux, Sombret, C., Teulon, F.; Global 93, 2, P 965, (1993)Google Scholar