Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T12:10:27.424Z Has data issue: false hasContentIssue false

Modeling of the effect of bio-conjugation to anti-interleukin-10 antibodieson the photoluminescence of CdSe/ZnS quantum dots

Published online by Cambridge University Press:  19 November 2013

Tetyana V. Torchynska
Affiliation:
ESFM Instituto Politécnico Nacional, México, D.F. 07738, México
Yuri V. Vorobiev
Affiliation:
CINVESTAV Instituto Politécnico Nacional, Querétaro, QRO 76230, México
Paul P. Horley
Affiliation:
CIMAV Chihuahua / Monterrey, Chihuahua, CHIH 31109, México
Get access

Abstract

Bio-conjugated CdSe/ZnS core/shell quantum dots (QDs) attract essential scientific interest due to their possible nano-medicine applications, including selective highlighting of affected tissues and targeted drug delivery to the certain type of cells. The paper is focused on the theoretical description of the blue shift observed in the luminescence spectra of CdSe/ZnS QDs upon their bio-conjugation with the anti-interleukin-10 antibodies. We propose a model that describes the ground state of the exciton confined in a quantum dot and explaining the bio-conjugation phenomenon by the change of the effective confinement volume.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nanomedicine: Design of particles, sensors, motors, implants, robots and devices, edited by Schulz, M.J., Shanov, V.N. and Yun, Y. (Artech House, Boston, 2009).Google Scholar
Tribbals, H.F., Medical Nanotechnology and Nanomedicine (CRC Press, Boca Raton, 2011)Google Scholar
de Waal Malefyt, R., Interleukin-10. in Cytokines, edited by Mire-Sluis, A. and Thorpe, R. (Academic Press, San Diego, 1998) pp. 151168.CrossRefGoogle Scholar
Grimbaldeston, M.S., Nakae, S., Kalesnikoff, J., Tsai, M. and Galli, S.J., Nature Immunology 8, 10951104 (2007).CrossRefGoogle Scholar
Quintos Vazquez, A.L., Torchynska, T.V., Casas Espinola, J.L., Jaramillo Gómez, J.A., and Douda, J.. Journal of Luminescence 143, 3842 (2013).CrossRefGoogle Scholar
Efros, Al. L. and Efros, A.L., Soviet Physics Semiconductors 16, 772 (1982).Google Scholar
Tessler, N., Medvedev, V., Kazes, M., Kan, S.-H., Banin, U., Science 295, 15061508 (2002).CrossRefGoogle Scholar
Dybec, M. et al. . Applied Physics Letters 90, 263112 (2007).CrossRefGoogle Scholar
Miller, D.A.B., Quantum Mechanics for Scientists and Engineers (Cambridge University Press, Cambridge, 2008).CrossRefGoogle Scholar
Horley, P.P., Ribeiro, P., Vieira, V.R., González-Hernández, J., Vorobiev, Yu.V., Trápaga-Martínez, L.G., Physica E 44 16021607 (2012).CrossRefGoogle Scholar
Vorobiev, Y.V., Gorley, P.M., Vieira, V.R., Horley, P.P., González-Hernández, J., Torchynska, T.V., and Diaz Cano, A., Physica E 42, 22642267 (2010).CrossRefGoogle Scholar
Kittel, C., Introduction to Solid State Physics, 6 th Ed. New York, John Wiley, 1986, p.185.Google Scholar
Norris, D.J., Bawendi, M.G., Physical Review B 53, 16338 (1996).CrossRefGoogle Scholar