Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T17:51:13.148Z Has data issue: false hasContentIssue false

A Model for the Mechanisms of Charge Transport Controlled by the Short-range Mobility

Published online by Cambridge University Press:  27 June 2013

Valerio Dallacasa*
Affiliation:
Department of Computer Science, University of Verona, Italy
Get access

Abstract

Studies of carrier motion in a variety of nanostructures have indicated that a modified Drude model can be applied, by considering carrier bound motion from backscattering mechanisms and localized oscillator modes. Based on the results of these studies a model of damped harmonic oscillation modes is suggested to evaluate transport parameters in piezotronic devices. Here, the case of a system subject to static and low frequency piezoelectric fields is considered which corresponds to typical working conditions of nanogenerators and, as a working example, the response of ZnO nanowires excited by sound waves is analyzed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, X., Song, J., Liu, J. and Wang, Z.L., Science 316, 102(2007).CrossRefGoogle Scholar
Cha, S. N., Seo, Ju-S., Kim, S. M., Kim, H. J., Park, Y. J., Kim, Sang-W.. and Kim, J. M.., Adv.Mater. 22, 4726(2010).CrossRefGoogle Scholar
Sohn, J. I., Cha, S. N., Song, B.G., Lee, S., Kim, S. M., Ku, J. Y., Kim, H. J., Park, Y. J., Choi, B. L., Wang, Z. L., Kim, J. M. and Kim, K., Energy Environ. Sci.,6, 97(2013).CrossRefGoogle Scholar
Borondics, F. and Kamarás, K., Phys. Rev.B 74, 045431(2006).CrossRefGoogle Scholar
Altan, H., Huang, F. and Federici, J. F., J. Appl. Phys. 96, 6685(2004).CrossRefGoogle Scholar
Han, J., Azad, A. K. and Zhang, W., J. Nanoelectron. Optoelectron. 2, 222(2007).CrossRefGoogle Scholar
Baxter, J. B. and Schuttenmaer, C., J.Phys. Chem B 110, 2522 (2006).Google Scholar
Cooke, D. G., MacDonald, A.N., Hryciw, A., Wang, J., Li, Q., Meldrum, A. and Hegmann, F. A., Phys. Rev. B 73, 193311(2006).CrossRefGoogle Scholar
Walther, M., Cooke, D. G., Sherstan, C., Hayar, M., Freeman, M. R. and Hegmann, F. A., Phys. Rev. B 76, 125408(2007).CrossRefGoogle Scholar
Smith., N.V, Phys.Rev. B 64, 155106(2001).CrossRefGoogle Scholar
Lloyd-Hughes, J. and Jeon, T., Journal of Infrared, Millimeter, and Terahertz Waves, 60, 1129(2012).Google Scholar
Ziman, J., “Principles of the Theory of Solids”, (Cambridge University Press, 1979) .Google Scholar
Romano, G., Mantini, G., Di Carlo, A., Amico, A.D', Falconi, C. and Lin Wang, Z., Nanotechnology 22, 465401(2011).CrossRefGoogle Scholar
Han, J., Zhang, W., Chen, W., Ray, S., Zhang, J.. He, M., Azad, A.K. and Zhu, Z., J.Phys. Chem. C 111, 13000(2007).CrossRefGoogle Scholar
Han, J., Zhou, Z., Ray, S., Azad, A. K., Ahang, W., He, M., Li, S. and Zhao, Y., Appl. Phys. Lett. 89, 031107(2006).CrossRefGoogle Scholar
Ming-wei, W., K.Woo, B., Zhen, T., Jia-guang, H., Wei, C. and Wei-li, Z., Opt. Lett. 5, 0430(2009).Google Scholar
Decremps, F., Porres, J. P., Saitta, A.M., Chervin, J. C. and Polian, A., Phys. Rev. B 65, 092101(2002).CrossRefGoogle Scholar
Ruf, T., Serrano, J. and Cardona, M., Phys. Rev. Lett. 86, 906(2000).CrossRefGoogle Scholar
Parkinson, P., Lloyd-Hughes, J., Gao, Q., Tan, H. H., Jagadish, C., Johnston, M. B. and Herz, L. M. Nano Lett. 7,72162(2007).CrossRefGoogle Scholar