Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T22:06:22.579Z Has data issue: false hasContentIssue false

MOCVD Growth and Characterization of AlGaInN Nanowires and Nanostructures

Published online by Cambridge University Press:  01 February 2011

Jung Han
Affiliation:
[email protected], Yale University, Department of Electrical Engineering, 15 Prospect Street, POBox 208284, New Haven, CT, 06520, United States, 2034327567, 2034327769
K Kim
Affiliation:
[email protected], United States
Jie Su
Affiliation:
[email protected], United States
Maria Gherasimova
Affiliation:
[email protected], United States
Arto Nurmikko
Affiliation:
S. F. Chichibu
Affiliation:
Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573, Japan
C. Broadbridge
Affiliation:
Department of Physics, Southern Connecticut St. University, New Haven, CT 06515
Get access

Abstract

Growth of GaN and AlGaInN nanowires using metalorganic chemical vapor deposition (MOCVD) is investigated. It is determined that surface kinetics play an important role in non-equilibrium synthesis process such as MOCVD, in contrast to near-equilibrium synthesis by hot-wall furnace reactor. Examination of crystallographic properties of GaN nanowires reveals preferential growth directions which are perpendicular to the c-axis. Such a tendency is analyzed by both thermodynamic and kinetic arguments and attributed to the minimization of (side wall) surface energy. Spontaneous formation of Al(Ga)N/GaN coaxial nanowires with distinct emission at 370 nm is observed. It is identified that the interplay between surface kinetics and thermodynamics facilitates the catalytic growth of GaN core while a limited surface diffusion of Al adatoms leads to nonselective, vapor-solid growth of Al(Ga)N sheath. The knowledge of crystallographic alignment is applied to the formation of arrayed GaN nanowires in both vertical and horizontal fashions, resulting in potentially new paradigms for creating nanoscale devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wagner, R. S. in Whisker Technology, edited by Levitt, A. P., John Wiley & Sons, New York (1970).Google Scholar
2 Duan, X. and Lieber, C. M., Adv. Mater. 12, 298(2000).3.0.CO;2-Y>CrossRef3.0.CO;2-Y>Google Scholar
3 Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C., and Lieber, C. M., Nature 415, 617(2002);CrossRefGoogle Scholar
Wu, Y., Fan, R., and Yang, P., Nano Lett. 2, 83(2002).CrossRefGoogle Scholar
4 Sapphire, alumina, SiO2, and MOCVD-grown GaN epilayers were dipped in 0.01M Ni(NO3)2 aqueous solution and dried in air on filter papers before loading into the MOCVD reactor.Google Scholar
5 Givargizov, E. I., J. Cryst. Growth 31, 20(1975).Google Scholar
6 For example, Chen, C., Yeh, C., Chen, C., Yu, M., Liu, H., Wu, J., Chen, K., Chen, L., Peng, J., and Chen, Y, J. Am. Chem. Soc., 123, 2791 (2001).CrossRefGoogle Scholar
7 Stringfellow, G.B., Mat. Sci. and Eng. B 87, 97 (2001).CrossRefGoogle Scholar
8 Jensen, L. E., Bjork, M. T., Jeppesen, S., Persson, A.I., Ohlsson, B.J., and Samuelson, L., Nano Lett. 4, 1961 (2004).CrossRefGoogle Scholar
9 Kasu, M. and Kobayashi, N., J. Cryst. Growth 174, 513 (1997).CrossRefGoogle Scholar
10 Su, J., Cui, G., Gherasimova, M., Tsukamoto, H., Han, J., Ciuparu, D., Lim, S., Pfefferle, L., He, Y., Nurmikko, A. V., Broadbridge, C., and Lehman, A., Appl. Phys. Lett 86, 013105 (2005)CrossRefGoogle Scholar
11 Hiramatsu, K., Nishiyama, K., Motogaito, A., Miyake, H., Iyechika, Y., and Maeda, T., phys. stat. sol. (a) 176, 535 (1999)3.0.CO;2-I>CrossRef3.0.CO;2-I>Google Scholar
12 Peng, D., Osher, S., Merriman, B., and Zhao, J.-K, Contemp. Math. 238, 251 (1999).CrossRefGoogle Scholar
13 Du, D., Srolovitz, D. J., Coltrin, M. E., and Mitchell, C. C., Phys Rev Lett, 95, 155503 (2005)CrossRefGoogle Scholar
14 We note that the 3D Wulff diagram in [12] did not include the consideration of asymmetry in growth rates between the Ga-polarity (0001) and N-polarity (0001) surfaces.Google Scholar
15 Su, J., Ph.D. Thesis, Yale University, December 2005.Google Scholar
16 Markowitz, P.D., Zach, M.P., Gibbons, P.C., Penner, R.M., and Buhro, W. E., J. Am. Chem. Soc. 123, 4502(2001).CrossRefGoogle Scholar
17 Wu, Z. H., Sun, M., Mei, X. Y., and Ruda, H.E., Appl. Phys. Lett. 85, 657(2004).CrossRefGoogle Scholar
18 Tateno, K., Gotoh, H., and Watanabe, Y., Appl. Phys. Lett. 85, 1808(2004).CrossRefGoogle Scholar
19 Choi, H., Johnson, J. C., He, R., Lee, S., Kim, F., Pauzauskie, P., Goldberger, J., Saykally, R.J., and Yang, P., J. Phys. Chem. 107, 8721 (2003).CrossRefGoogle Scholar
20 Su, J., Gherasimova, M., Cui, G., Tsukamoto, H., Han, J., Onuma, T., Kurimoto, M., Chichibu, S. F., Broadbridge, C., He, Y., Nurmikko, A. V., Appl. Phys. Lett. 87, 183108 (2005)CrossRefGoogle Scholar
21 The sum of TMAl and TMGa flows is 9.4 μmol/min. Reactor pressure is maintained at 50 mbar.Google Scholar
22 Detchprohm, T., Sano, S., Mochizuki, S., Kamiyama, S., Amano, H., and Akasaki, I., Phys. Stat. Sol. (a) 188, 799 (2001).Google Scholar
23 Based on the assumption that the slope is proportional to the ratio between radial and axial growth rates, an enhancement of Ga incorporation on the order of 800 is estimated.Google Scholar
24 Qian, F., Li, Y., Gradecak, S., Wang, D., Barrelet, C., and Lieber, C. M., Nano Lett. 4, 1975 (2004).CrossRefGoogle Scholar
25 Lyu, S., Cha, O., Suh, E., Ruh, H., Lee, H., and Lee, C., Chem. Phys. Lett., 367, 136(2003)CrossRefGoogle Scholar
26 Chen, C., Yeh, C., Adv. Mater. 12, 738 (2000)3.0.CO;2-J>CrossRefGoogle Scholar
27 Han, S., Jin, W., Tang, T., Li, C., Zhang, D., Liu, X., Han, J., and Zhou, C., J. Mater. Res. 18, 245 (2003)CrossRefGoogle Scholar
28 Lee, S., Mo, Y., Nahm, K., Suh, E., Lim, K., Phys. Stat. Sol. (C) 1, 148 (2002)Google Scholar
29 Zhang, Z., Qian, F., Wang, D., and Lieber, C. M., Nano Lett. 3, 343 (2003).CrossRefGoogle Scholar
30 Epitaxial growth of [1010]-oriented GaN nanowires on γ-LiAlO2 and [0001]-oriented nanowires on (111)MgO substrates, both in vertical configuration, was reported (Kuykendall et al., Nature Mat. 3, 524 (2004)) during the preparation of this manuscript.Google Scholar
31 Smith, P. A., Nordquist, C. D., Jackson, T. N., Mayer, T. S., Appl. Phys. Lett. 77, 1399 (2000)CrossRefGoogle Scholar
32 Huang, Y., Duan, X., Wei, Q., Lieber, C. M., Science 291, 630 (2001)CrossRefGoogle Scholar
33 Whang, D., Jin, S., Wu, Y. and Lieber, C.M., Nano Lett. 3, 1255 (2003).CrossRefGoogle Scholar
34 Sato, H., Takegawa, H., Yamaji, H., Miyake, H., Hiramatsu, K., and Saito, T., J. Vac. Sci. Technol. B 22, 1335 (2004)CrossRefGoogle Scholar