Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T03:13:00.690Z Has data issue: false hasContentIssue false

Mixed-Ionic-Electronic-Conduction (MIEC)-Based Access Devices for 3D Multilayer Crosspoint Memory

Published online by Cambridge University Press:  09 February 2015

Kumar Virwani*
Affiliation:
IBM Research – Almaden, 650 Harry Road, San Jose, California 95120
Geoffrey W. Burr
Affiliation:
IBM Research – Almaden, 650 Harry Road, San Jose, California 95120
Pritish Narayanan
Affiliation:
IBM Research – Almaden, 650 Harry Road, San Jose, California 95120
Bülent Kurdi
Affiliation:
IBM Research – Almaden, 650 Harry Road, San Jose, California 95120
Get access

Abstract

A number of applications call for the organization of resistive non-volatile memory (NVM) into large, densely-packed crossbar arrays. While resistive-NVM devices often possess some degree of inherent nonlinearity (typically 3-30× contrast), the operation of large (>1000×1000 device) arrays at low power tends to require large (> 1e7) ON-to-OFF ratios between the currents passed at high and at low voltages. Such large nonlinearities can be implemented by including a distinct access device together with each of the state-bearing resistive-NVM elements. While such an access device need not store data, its list of requirements is almost as challenging as the specifications demanded of the memory device.

We review our work on high-performance access devices based on Cu-containing Mixed-Ionic-Electronic Conduction (MIEC) materials [1–7]. (This version focuses only on the MIEC-based access device itself; previously-published longer versions of this work [8–10] also include more extensive surveys of competing devices as well.) These devices require only the low processing temperatures of the Back-End-Of-the-Line (BEOL), making them highly suitable for implementing multi-layer crossbar arrays. MIEC-based access devices offer large ON/OFF ratios (>1e7), a significant voltage margin Vm (over which current < 10nA), and ultra-low leakage (<10pA), while also offering the high current densities needed for PCM and the fully bipolar operation needed for high-performance RRAM. Scalability to critical dimensions (CD) <30nm and thicknesses <15nm, tight distributions and 100% yield in large (512kBit) arrays, long-term stability of the ultra-low leakage states, and sub-50ns turn-ON times have all been demonstrated. Numerical modeling of these MIEC-based access devices shows that their operation depends on Cu+ mediated hole conduction. Circuit simulations reveal that while scaled MIEC devices are suitable for large crossbar arrays of resistive-NVM devices with low (<1.2V) switching voltages, a compact vertical stack of two MIEC devices in series could support large crossbar arrays for switching voltages up to 2.5V.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gopalakrishnan, K., Shenoy, R. S., Rettner, C. T., Virwani, K., Bethune, D. S., Shelby, R. M., Burr, G. W., Kellock, A., King, R. S., Nguyen, K., Bowers, A. N., Jurich, M., Jackson, B., M.Friz, A., Topuria, T., Rice, P. M., and Kurdi, B. N.. In Symposium on VLSI Technology, page 19.4, 2010.Google Scholar
Shenoy, R. S., Gopalakrishnan, K., Jackson, B., Virwani, K., Burr, G. W., Rettner, C. T., Padilla, A., Bethune, D. S., Shelby, R. M., Kellock, A. J., Breitwisch, M., Joseph, E. A., Dasaka, R., King, R. S., Nguyen, K., Bowers, A. N., Jurich, M., Friz, A. M., Topuria, T., Rice, P. M., and Kurdi, B. N.. In Symposium on VLSI Technology, pages T5B–1, 2011.Google Scholar
Burr, G. W., Virwani, K., Shenoy, R. S., Padilla, A., BrightSky, M., Joseph, E. A., Lofaro, M., Kellock, A. J., King, R. S., Nguyen, K., Bowers, A. N., Jurich, M., Rettner, C. T., Jack-son, B., Bethune, D. S., Shelby, R. M., Topuria, T., Arellano, N., Rice, P. M., Kurdi, B. N., and Gopalakrishnan, K.. In Symposium on VLSI Technology, page T5.4, 2012.Google Scholar
Virwani, K., Burr, G. W., Shenoy, R. S., Rettner, C. T., Padilla, A., Topuria, T., Rice, P. M., Ho, G., King, R. S., Nguyen, K., Bowers, A. N., Jurich, M., BrightSky, M., Joseph, E. A., Kellock, A. J., Arellano, N., Kurdi, B. N., and Gopalakrishnan, K.. In IEDM Technical Digest, page 2.7, 2012.Google Scholar
Burr, G. W., Virwani, K., Shenoy, R. S., Fraczak, G. H., Rettner, C. T., Padilla, A., King, R. S., Nguyen, K., Bowers, A. N., Jurich, M., BrightSky, M., Joseph, E. A., Kellock, A. J., Arellano, N., Kurdi, B. N., and Gopalakrishnan, K.. In Symposium on VLSI Technology, page T6.4, 2013.Google Scholar
Padilla, A., Burr, G. W., Shenoy, R. S., Raman, K. V., Bethune, D., Shelby, R. M., Rettner, C. T., Mohammad, J., Virwani, K., Narayanan, P., Deb, A. K., Pandey, R. K., Bajaj, M., Murali, K. V. R. M., Kurdi, B. N., and Gopalakrishnan, K.. In Device Research Conference, 2014. III–53.Google Scholar
Narayanan, P., Burr, G. W., Shenoy, R. S., Stephens, S., Virwani, K., Padilla, A., Kurdi, B., and Gopalakrishnan, K.. In Device Research Conference, 2014. V.–A5.Google Scholar
Shenoy, R. S., Burr, G. W., Virwani, K., Jackson, B., Padilla, A., Narayanan, P., Rettner, C., Shelby, R. M., Bethune, D. S., Raman, K., BrightSky, M., Joseph, E., Rice, P. M., Topuria, T., Kellock, A. J., Kurdi, B., and Gopalakrishnan, K.. Semi. Sci. Tech., 29(10):104005, 2014.CrossRefGoogle Scholar
Burr, G. W., Shenoy, R. S., Virwani, K., Narayanan, P., Padilla, A., Kurdi, B., and Hwang, H.. J. Vac. Sci. Tech. B, 32(4):040802, 2014.CrossRefGoogle Scholar
Burr, G. W., Shenoy, R. S., and Hwang, H.. Resistive switching – from fundamentals of nanoionic redox processes to memristive device applications, chapter 23: “Select device concepts for crossbar arrays”. Wiley-VCH, 2015.Google Scholar
Burr, G. W., Kurdi, B. N., Scott, J. C., Lam, C. H., Gopalakrishnan, K., and Shenoy, R. S.. IBM Journal of Research and Development, 52(4/5):449464, 2008.CrossRefGoogle Scholar
Raoux, S., Burr, G. W., Breitwisch, M. J., Rettner, C. T., Chen, Y.-C., Shelby, R. M., Salinga, M., Krebs, D., Chen, S.-H., Lung, H.-L., and Lam, C. H.. IBM Journal of Research and Development, 52(4/5):465480, 2008.CrossRefGoogle Scholar
Burr, G. W., Breitwisch, M. J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi, B., Lam, C., Lastras, L. A., Padilla, A., Rajendran, B., Raoux, S., and Shenoy, R.. Journal of Vacuum Science & Technology B, 28(2):223262, 2010.CrossRefGoogle Scholar
Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S.. Nature, 453(7191):8083, 2008.CrossRefGoogle Scholar
Freitas, R. and Wilcke, W.. IBM Journal of Research and Development, 52(4/5):439448, 2008.CrossRefGoogle Scholar
Chen, A.. IEEE Trans. Electr. Dev., 60(4):13181326, 2013.CrossRefGoogle Scholar
Chen, A.. In Nanotechnology (IEEE–NANO), 2011 11th IEEE Conference on, pages 17671771. IEEE, 2011.CrossRefGoogle Scholar
Zhang, L., Cosemans, S., Wouters, D. J., Groeseneken, G., and Jurczak, M.. In ESSDERC, pages 282285, 2012.Google Scholar
Deng, Y. X., Huang, P., Chen, B., Yang, X. L., Gao, B., Wang, J. C., Zeng, L., Du, G., Kang, J. F., and Liu, X. Y.. IEEE Trans. Electr. Dev., 60(2):719726;, 2013.CrossRefGoogle Scholar
Liang, J. and Wong, H.-S. P.. IEEE Trans. Electr. Dev., 57(10):25312538, 2010.CrossRefGoogle Scholar
Liang, J. L., Yeh, S., Wong, S. S., and Wong, H. S. P.. ACM Journal On Emerging Technologies in Computing Systems, 9(1):9, 2013.CrossRefGoogle Scholar
Padilla, A., Burr, G. W., Virwani, K., Debunne, A., Rettner, C. T., Topuria, T., Rice, P. M., Jackson, B., Dupouy, D., Kellock, A. J., Shelby, R. M., Gopalakrishnan, K., Shenoy, R. S., and Kurdi, B. N.. In IEDM Technical Digest, page 29.4, 2010.Google Scholar
Padilla, A., Burr, G. W., Rettner, C. T., Topuria, T., Rice, P. M., Jackson, B., Virwani, K., Kellock, A. J., Dupouy, D., Debunne, A., Shelby, R. M., Gopalakrishnan, K., Shenoy, R. S., and Kurdi, B. N.. Journal of Applied Physics, 110(5):054501, 2011.CrossRefGoogle Scholar
Kozicki, M. N., Park, M., and Mitkova, M.. IEEE Transactions On Nanotechnology, 4(3):331338, 2005.CrossRefGoogle Scholar
Kwon, D.-H., Kim, K. M., Jang, J. H., Jeon, J. M., Lee, M. H., Kim, G. H., Li, X.-S., Park, G.-S., Lee, B., Han, S., Kim, M., and Hwang, C. S.. Nature Nanotechnology, 5(2):148153, 2010.CrossRefGoogle Scholar