Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T08:12:26.631Z Has data issue: false hasContentIssue false

Mid-infrared Electroluminescence from Surface Plasmon Coupled InAs Quantum Dots

Published online by Cambridge University Press:  31 January 2011

Brandon Passmore
Affiliation:
[email protected], Sandia National Laboratories, Albuquerque, New Mexico, United States
David Adams
Affiliation:
[email protected], University of Massachusetts Lowell, Physics and Applied Physics, Lowell, Massachusetts, United States
Troy Ribaudo
Affiliation:
[email protected], University of Massachusetts Lowell, Physics and Applied Physics, Lowell, Massachusetts, United States
Dan Wasserman
Affiliation:
[email protected], University of Massachusetts Lowell, Physics and Applied Physics, Lowell, Massachusetts, United States
Stephen Lyon
Affiliation:
[email protected], Princeton University, Electrical Engineering, Princeton, New Jersey, United States
Eric Shaner
Affiliation:
[email protected], Sandia National Laboratories, Albuquerque, New Mexico, United States
Get access

Abstract

The mid-infrared spontaneous emission from intersubband energy transitions in self-assembled InAs quantum dots is demonstrated with plasmonic top contact output couplers. Electrically pumped devices having subwavelength meshes designed to exhibit extraordinary optical transmission from 9 – 12 μm are measured and compared to a reference device with an open area contact. From additional patterning on the top contact, the signal-to-noise ratio was 4 times greater than the reference device. Beyond simply filtering the emission spectra of the quantum dot material, an emission null is observed which we link to the dots being in the near field region of the plasmonic coupler.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Esaki, L. and Tsu, R., IBM J. Res. Dev. 14, 6165 (1970).Google Scholar
2 Kazarinov, R. and Suris, R., Sov. Phys. Semicond. 5, 707709 (1971).Google Scholar
3 Faist, J., Capasso, F., Sivco, D., Sirtori, C., Hutchinson, A., Cho, A., Science 264, 553556 (1994).Google Scholar
4 Curl, R. F. and Tittel, F. K., Annu. Rep. Prog. Chem., Sect. C 98, 219 (2002).Google Scholar
5 Faist, J., Hofstetter, D., Beck, M., Aellen, T., Rochat, M., and Blaser, S., “IEEE J. of Quant. Elect. 38, 533 (2002).Google Scholar
6 Lambrecht, A., Proc. of SPIE 5732, 122 (2005).Google Scholar
7 Urayama, J., Norris, T. B., Singh, J., and Bhattacharya, P., Phys. Rev. Lett. 86, 49304933 (2001).Google Scholar
8 Okamoto, K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T., and Scherer, A., Nature Materials 3, 601 (2004).Google Scholar
9 Sun, G., Khurgin, J. B., and Soref, R. A., Appl. Phys. Lett. 90, 111107 (2007).Google Scholar
10 Yeh, D. M., Huang, C. F., Chen, C. Y., Lu, Y. C., and Yang, C. C., Appl. Phys. Lett. 91, 171103 (2007).Google Scholar
11 Chuang, W. H., Wang, J. Y., Yang, C. C., and Kiang, Y. W., IEEE Photon. Tech. Lett. 20, 1339 (2008).Google Scholar
12 Gontijo, I., Boroditsky, M., and Yablonovitch, E., Phys. Rev. B 60, 11564 (1999).Google Scholar
13 Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., and Wolff, P. A., Nature 391, 667 (1998).Google Scholar
14 Wasserman, D., Shaner, E. A., and Cederberg, J. G., Appl. Phys. Lett. 90, 191102 (2007).Google Scholar
15 Passmore, B. S., Allen, D. G., Vangala, S. R., Goodhue, W. D., Wasserman, D., and Shaner, E. A., Optics Express 17, 10223 (2009).Google Scholar
16 Ribaudo, T., Adams, D. C., Passmore, B., Shaner, E. A., and Wasserman, D., Appl. Phys. Lett. 94, 201109 (2009).Google Scholar
17 Barnes, W. L., Dereux, A., and Ebbesen, T. W., Nature 424, 824 (2003).Google Scholar
18 Wasserman, D., Howard, S. H., Gmachl, C., Lyon, S. A., Cederberg, J., and Shaner, E. A., Proc. of SPIE 6386, 63860E (2006).Google Scholar