Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T15:38:27.226Z Has data issue: false hasContentIssue false

Microwave Metamaterials Containing Magnetically Soft Microwires

Published online by Cambridge University Press:  28 January 2011

L. V. Panina
Affiliation:
School of Comp., Comm. and Electr., Univ. of Plymouth, Drake Circus, PL4 AA, Plymouth, UK. Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU San Sebastián 20009, Spain.
M. Ipatov
Affiliation:
Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU San Sebastián 20009, Spain.
V. Zhukova
Affiliation:
Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU San Sebastián 20009, Spain.
J. Estevez
Affiliation:
Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU San Sebastián 20009, Spain.
A. Zhukov
Affiliation:
Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU San Sebastián 20009, Spain.
Get access

Abstract

This paper discusses a new type of wire media based on amorphous ferromagnetic microwires. The combination of two effects, namely, a strong dispersion of the effective permittivity in metallic wire composites (resonance or plasmonic type) and giant magnetoimpedance effect in wires will result in unusual property that an effective dielectric response may strongly depend on the wire magnetization which can be changed with different external stimuli. We have demonstrated the effect of the external magnetic field on microwave response from composites containing CoFeSiBCr amorphous wires in free space at microwave frequency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rotman, W., “Plasma simulation by artificial dielectrics and parallel plate media,” IRE Trans. Antennas Propagat., vol. 10, 8295, 1962.Google Scholar
2. Pendry, J. B., Holden, A. J., Stewart, W. J., and Youngs, I., “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett., Vol. 76, No. 25, 47734776, 1996.Google Scholar
3. Lagarkov, A. N. and Sarychev, A. K., “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318, 1996.Google Scholar
4. Liu, L., Matitsine, S. M., Gan, Y. B., and Rozanov, K. N., “Effective permittivity of planar composites with randomly or periodically distributed conducting fibers,” J.Appl.Phys. 98, 63512, 2005.Google Scholar
5. Makhnovskiy, D.P., Panina, L. V., Garcia, C., Zhukov, A. P., and Gonzalez, J.Experimental demonstration of tunable scattering spectra at microwave frequencies in composite media containing CoFeCrSiB glass-coated amorphous ferromagnetic wires and comparison with theory,” Phys. Rev. B, Vol. 74, 064205-1064205-11, 2006.Google Scholar
6. García, C., Zhukov, A., Zhukova, V., Ipatov, M., Blanco, J. M., and Gonzalez, J.. Effect of tensile stresses on GMI of Co-rich amorphous microwires. IEEE Trans. Magn., 41:36883690, 2005.Google Scholar
7. Zhukova, V., Ipatov, M., Zhukov, A., Varga, R., Torcunov, A., Gonzalez, J., and Blanco, J. M.. Studies of magnetic properties of thin microwires with low Curie temperature. J. Magn. Magn. Mat., 300:1623, 2006 Google Scholar