Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T02:55:30.374Z Has data issue: false hasContentIssue false

Microwave Glow-Discharge Deposition of Amorphous Silicon Based Alloys at High Deposition Rates for Solar Cell Application

Published online by Cambridge University Press:  15 February 2011

S. Guha
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, Michigan 48084
X. Xu
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, Michigan 48084
J. Yang
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, Michigan 48084
A. Banerjee
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, Michigan 48084
Get access

Abstract

The optimum deposition conditions for growth of amorphous silicon (a-Si:H) and silicon-germanium (a-SiGe:H) alloys deposited at high rates using microwave glow-discharge are found to be quite different from those for radio-frequency glow-discharge material deposited at low rates. High substrate temperature (350 to 500 °C), low pressure (1–5 mtorr) and positive ion bombardment are found to be desirable for optimum growth conditions at high deposition rates. We have achieved an active-area efficiency of 11.44% for a double-junction structure in which the bottom cell incorporates a-SiGe:H alloy deposited at 100 Å/sec using microwave glow-discharge.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yang, J. and Guha, S., Appl. Phys. Lett. 61, 2917 (1992).Google Scholar
2 Guha, S. et al., Mat. Res. Soc. Symp. Proc. 336, 645 (1994).Google Scholar
3 Tanaka, K. and Matsuda, A., Materials Sc. Rep. 2, 139 (1987);Google Scholar
Gallagher, A., Mat. Res. Soc. Symp. Proc. 70, 3 (1986).Google Scholar
4 Guha, S., Yang, J., Jones, S., Chen, Y., and Williamson, D., Appl. Phys. Lett. 61, 1444 (1992).Google Scholar
5 Hudgens, S. J., Johncock, A. G. and Ovshinsky, S. R., J. Non-Cryst. Solids 77–78, 809 (1985).Google Scholar
6 Hudgens, S. J. and Johncock, A. G., Mat. Res. Soc. Symp. Proc. 49, 403 (1985).Google Scholar
7 Johncock, A. G., Hudgens, S. J. and Guha, S., Mat. Res. Soc. Symp. Proc. 95, 653 (1987).Google Scholar
8 Saito, K., Sano, M., Ogawa, K., and Kajita, I., J. Non-Cryst. Solids, 164–166, 689 (1993).Google Scholar
9 Yang, J., Glatfelter, T., Ross, R., Mohr, R., Fournier, J. P. and Guha, S., J. Non-Cryst. Solids 97–98, 1303 (1987).Google Scholar
10 Hydrogenated Amorphous Silicon Alloy Deposition Processes, Luft, W. and Tsuo, Y. S. (Mercel Dekker, Inc., New York, 1993), p. 134.Google Scholar
11 Guha, S., Banerjee, A., Yang, J., and Xu, X., United States Patent No. 5,231,048, July 27, 1993.Google Scholar
12 Guha, S., Yang, J., and Xu, X., United States Patent No. 5,346,853, Sept. 13, 1994.Google Scholar
13 Johnson, N. M., Santos, P. V., Nebel, C. E., Jackson, W. B., Street, R. A., Stevens, K. S., and Walker, J., J. Non-Cryst. Solids, 137–138, 235 (1991).Google Scholar
14 Ganguly, G. and Matsuda, A., Phys. Rev. B 47, 3661 (1993).Google Scholar
15 Guha, S., Final Subcontract Progress Report, NREL/SERI Subcontract No. ZB-7–06003–4 (Feb.1990).Google Scholar
16 Guha, S., Yang, J., Pawlikiewicz, A., Glatfelter, T., Ross, R., and Ovshinsky, S. R., Appl. Phys. Lett. 54, 2330 (1989).Google Scholar