Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T20:06:18.994Z Has data issue: false hasContentIssue false

Microwave Activation of Dopants & Solid Phase Epitaxy in Silicon

Published online by Cambridge University Press:  01 February 2011

Douglas C. Thompson
Affiliation:
[email protected], Arizona State University, School of Materials, 1711 S. Rural Road # ECG 303, Tempe, AZ, 85287-8706, United States, (480) 965-2861, (480) 965-8976
J. Decker
Affiliation:
[email protected], Arizona State University, School of Materials, Tempe, AZ, 85287, United States
T. L. Alford
Affiliation:
[email protected], Arizona State University, School of Materials, Tempe, AZ, 85287, United States
J. W. Mayer
Affiliation:
[email protected], Arizona State University, School of Materials, Tempe, AZ, 85287, United States
N. David Theodore
Affiliation:
[email protected], Freescale Semiconductor Inc., Wireless & Packaging Systems Lab., Tempe, AZ, 85284, United States
Get access

Abstract

Microwave heating is used to activate solid phase epitaxial re-growth of amorphous silicon layers on single crystal silicon substrates. Layers of single crystal silicon were made amorphous through ion implantation with varying doses of boron or arsenic. Microwave processing occurred inside a 2.45 GHz, 1300 W cavity applicator microwave system for time-durations of 1-120 minutes. Sample temperatures were monitored using optical pyrometery. Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy were used to monitor crystalline quality in as-implanted and annealed samples. Sheet resistance readings show dopant activation occurring in both boron and arsenic implanted samples. In samples with large doses of arsenic, the defects resulting from vacancies and/or micro cluster precipitates are seen in transmission electron micrographs. Materials properties are used to explain microwave heating of silicon and demonstrate that the damage created in the implantation process serves to enhance microwave absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rzhanov, A. V., Gerasimenko, N. N., Vasil'ev, S. V. and Obodnikov, V. I., Sov. Tech. Phys. Lett. 7, 521, (1981)Google Scholar
2 Zhang, S.-L., Buchta, R. and Sigurd, D., Thin Solid Films, 246, 151 (1994).Google Scholar
3 Zohm, H., Kasper, E., Mehringer, P. and Müller, G. A., Microelec. Eng. 54 247 (2003).Google Scholar
4 Thompson, K., Booske, J. H., Cooper, R. F. and Gianchandani, Y. B., Mat. Res. Soc. Symp. Proc. 717 (2002).Google Scholar
5 Buchta, R., Zhang, S.-L., and Sigurd, D., Appl. Phys. Lett. 62, 3153 (1993).Google Scholar
6 Schroder, D. K., Semiconductor Material and Device Characterization, John Wiley & Sons, Hoboken, New Jersey (2006).Google Scholar
7 Thompson, D. C., Kim, H. C., Alford, T. L., Mayer, J. W., Appl. Phys. Lett. 83, 3918 (2003).Google Scholar
8 Thompson, D. C., Alford, T. L., Mayer, J. W., Höchbauer, T., Nastasi, M., Lau, S. S., Theodore, N. David, Henttinen, K., Suni, Ilkka and Chu, Paul K., Appl. Phys. Lett. 87, 224103 (2005).Google Scholar
9 Sato, T., Jpn. J. Appl. Phys. 6, 339 (1967).Google Scholar
10 Doolittle, L. R., Nuclear Instruments & Methods in Physics Research, B B9, 344351 (1985).Google Scholar
11 Cullity, B. D. and Stock, S. R., Elements of X-Ray Diffraction, Prentice Hall, Upper Saddle River, NJ (2001).Google Scholar
12 Zeigler, J. F., IBM Research, Yorktown, NY, 10598.Google Scholar
13 Mayer, J. W., Lau, S. S., Electronic Materials Science: For Integrated Circuits in Si and GaAs, Macmillan Publishing Company, New York, NY (1990).Google Scholar
14 Plummer, J. D., Deal, M. D., Griffin, P. B., Silicon VLSI Technology: Fundamentals, Practice and Modeling, Prentice Hall, Upper Saddle River, NJ (2000).Google Scholar
15 Jones, K. S., Prussin, S. and Weber, E. R., Appl. Phys. A 45, 1 (1998).Google Scholar
16 Metaxas, A. C., Meredith, R. J., Industrial Microwave Heating, IEEE Power Engineering Series 4, (Peter Peregrinus Ltd, London, U. K. 1983).Google Scholar