Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T21:43:48.637Z Has data issue: false hasContentIssue false

Microstructures of AlN Buffer Layers for the Growth of GaN on (0001) Al2O3

Published online by Cambridge University Press:  10 February 2011

M. Yeadon
Affiliation:
Materials Research Laboratory, [email protected]
W. Kim
Affiliation:
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
A. E. Botchkarev
Affiliation:
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
S. N. Mohammad
Affiliation:
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
H. Morkoc
Affiliation:
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
J. M. Gibson
Affiliation:
Materials Research Laboratory, [email protected]
Get access

Abstract

Ill-nitride semiconductors are emerging as highly promising candidates for the fabrication of wide band-gap electronic and opto-electronic devices. Sapphire ((α-A12O3) is currently one of the primary substrates of choice for the growth of GaN despite a large lattice mismatch. Significant improvements in the quality of III-nitride layers have been demonstrated by exposure of the substrate to reactive nitrogen species followed by deposition of a low temperature AIN or GaN buffer layer. In this paper we present a study of the evolution of the surface topography and defect microstructure of nitrided α-A12O3 substrates and AIN buffer layers deposited by reactive molecular beam epitaxy (RMBE). Their influence on the morphology and properties of GaN layers is also discussed. Both nitridation time and AIN deposit thickness were varied systematically, at different temperatures and buffer growth rates. The microstructures were characterized using the atomic force microscope (AFM) and transmission electron microscope (TEM). Initial growth studies are ideally suited to in-situ experiments, and further investigations are also in progress using a unique UHV TEM with the facility for in-situ RMBE.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mohammad, S.N., Salvador, A. and Morkoc, H., Proc. IEEE 83, p. 1306 (1995).Google Scholar
2. Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S., Jpn. J. Appl. Phys. 34, p. L797 (1995).Google Scholar
3. Fan, Z.-F., Mohammad, S.N., Aktas, O., Botchkarev, A.E., Salvador, A., Morkoc, H., Appl. Phys. Lett. (in press).Google Scholar
4. Mohammad, S.N., Fan, Z.-F., Salvador, A., Aktas, O., Botchkarev, A.E., Kim, W., and Morkoc, H., Appl. Phys. Lett., submitted.Google Scholar
5. Aktas, O., Kim, W., Fan, Z.-F., Botchkarev, A.E., Salvador, A., Mohammad, S.N., Sverdlov, B., Morkoc, H., Electron. Lett. 31, p. 1389 (1995).Google Scholar
6. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J. Crystal Growth 98, p. 209 (1989).Google Scholar
7. Kuznia, J.N., Khan, M. A., Olson, D.T., Kaplan, R. and Freitas, J., J. Appl. Phys. 73, p. 4700 (1993).Google Scholar
8. Nakamura, S., Jpn. J. Appl. Phys. 30, p. L1705 (1991).Google Scholar
9. Koide, Y., Itoh, N., Itoh, K., Sawaki, N. and Akasaki, I., Jpn. J. Appl. Phys. 27, p. 1156 (1988).Google Scholar
10. Hwang, C.-Y., Schurman, M. J., and Mayo, W. E., Li, Y. and Lu, Y., Liu, H., Salagaj, T., and Stall, R. A., J. Vac. Sci. Technol. A 13 (3), p. 672 (1995).Google Scholar
11. Uchida, K., Watanabe, A., Yano, F., Koguchi, M., Tanaka, T., and Minagawa, S., J. Appl. Phys. 79 (7), p. 3487 (1996).Google Scholar
12. Qian, W., Skowronski, M., De Graef, M., Doverspike, K., Rowland, L.B. and Gaskill, D.K., Appl. Phys. Lett. 66 (10), p. 1252 (1995)Google Scholar