Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T01:41:09.978Z Has data issue: false hasContentIssue false

Microstructure of epitaxial AlN layers on sapphire substrates deposited by physical vapor deposition

Published online by Cambridge University Press:  15 February 2013

Sandeep Kohli
Affiliation:
Veeco Instruments Inc., 1 Terminal Drive, Plainview NY 11803, USA
Boris Druz
Affiliation:
Veeco Instruments Inc., 1 Terminal Drive, Plainview NY 11803, USA
Adrian Devasahayam
Affiliation:
Veeco Instruments Inc., 1 Terminal Drive, Plainview NY 11803, USA
Arindom Datta
Affiliation:
Veeco Instruments Inc., 1 Terminal Drive, Plainview NY 11803, USA
Frank Cerio
Affiliation:
Veeco Instruments Inc., 1 Terminal Drive, Plainview NY 11803, USA
Get access

Abstract

Asymmetric (10L) XRD peaks have been employed as a measure of epitaxial quality for aluminum nitride (AlN) nucleation layers (NL) deposited on sapphire substrate. Epitaxial AlN films have been deposited on 2-6” sapphire substrate by reactive sputtering. FWHM of AlN (103) and (105) were found to be an excellent indicator of quality of AlN films for GaN growth. AlN films produced nucleation layers with highly reproducible microstructure and GaN film growth. NLs had in-plane and out-of-plane texture as evident by the pole-figure results and selected area diffraction pattern. Based on electron microscopy results, AlN film thickness for complete atomic ordering was estimated to be 6-7 nm and most of the edge dislocations were seen in the first 20 nm of the film. Excellent thickness and texture uniformity were seen on planar and patterned sapphire substrates. A compressive stress of 2.9±0.2 GPa was seen in our BKM films. The maximum screw and edge dislocation densities of films were found to be ∼3 x 108 cm−2 and ∼9 x 109 cm−2 respectively. The root mean square roughnesses of A-polar films were found to be < 0.3 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nakamura, S., Mukair, T. & Senoh, M. (1991). Jap. J. Appl. Phys., 30, L1998.CrossRefGoogle Scholar
Bennett, S.E. (2010). Mat Sci Tech, 26, 10171028.CrossRefGoogle Scholar
Gibart, P. (2004). Rep. Prog. Phys, 67, 667 .CrossRefGoogle Scholar
Zhu, D., McAleese, C., Häberlen, M., Salcianu, C., Thrush, T., Kappers, M., Phillips, A., Lane, P., Kane, M., Wallis, D., Martin, T., Astles, M., Hylton, N., Dawson, P. & Humphreys, C. (2011). Journal of applied physics, 109, 014502(6).CrossRefGoogle Scholar
Dovidenko, K., Oktyabrsky, S., Narayan, J. & Razeghi, M. (1996). J. Appl. Phys, 79, 24392445.CrossRefGoogle Scholar
Volkova, A., Ivantsov, V. & Leung, L. (2011). J Crys Growth, 314, 113.CrossRefGoogle Scholar
Yoshida, S., Misawa, S. & Gonda, S. (1983). Appl Phys lett, 42, 427.CrossRefGoogle Scholar
Amano, H., Sawaki, N. & Akasaki, I. (1986). Appl. Phys. Lett., 48, 353.CrossRefGoogle Scholar
Kim, T.S., Kim, S., Jang, Y.H. & Junga, G.Y.□. (2007). Appl Phys letters, 91, 171114.CrossRefGoogle Scholar
Bläsing, J., Krost, A., Hertkorn, J., Scholz, F., Kirste, L., Chuvilin, A. & Kaiser, U. (2009). J Appl. Phys, 105, 033504(9).CrossRefGoogle Scholar
Duquenne, C., Djouadi, M.A., Tessier, P.Y., Jouan, P.Y., Besland, M.P., Brylinski, C., Aubry, R. & Delage, S. (2008). Appl Phys Let, 93, 052905.CrossRefGoogle Scholar
Valcheva, E., Paskova, T., Tungasmita, S., Persson, P.O.A., Birch, J., Svedberg, E.B., Hultman, L. & Monemar, B. (2000). Appl Phys Lett, 76, 1860.CrossRefGoogle Scholar
Xi, Y.A., Chen, K.X., Mont, F., Kim, J.K., Wetzel, C., Schubert, E.F., Liu, W., Li, X. & Smart, J.A. (2006). Appl. Phys. Lett., 89, 103106(3).CrossRefGoogle Scholar
Pantha, B.N., Dahal, R., Nakarmi, M.L., Nepal, N., Li, J., Lin, J.Y., Jiang, H.X., Paduano, Q.S. & Weyburne, D. (2007). Appl Phys Lett, 90, 241101(3).CrossRefGoogle Scholar