Published online by Cambridge University Press: 26 February 2011
Rapidly quenched ribbons (˜50m thickness) of Al-5wt.%Ti, Al-lwt.%B and a range of Al-Ti-B alloys have been produced by melt spinning under He atmosphere and the microstructures of the ribbons, following solidification and post-solidification heat treatment, characterized using analytical electron microscopy. In the Al-5Ti alloy, the coarse equilibrium primary phase (b.c.t. Al3 Ti) that is observed following conventional casting is replaced by fine (0.1–0. 2μm), cuboidal particles of a metastable cubic (Ll2) Al3Ti in melt-spun ribbon. These metastable particles form directly from the melt and act as nucleation sites for the solid solution which subsequently forms. A refined microstructure with an average grain size of 1–2μm results. A supersaturation of Ti is retained in matrix solid solution following solidification and a variety of solid state precipitate forms, including fine dispersions of coherent, metastable Al3 Ti particles, is observed to emerge during post-solidification heat treatment. For the Al-1B alloy, the coarse distribution of primary AlB2 particles in a chill-cast ingot is replaced by a fine, uniform dispersion of the metastable boride, α-AlB12, in the melt-spun ribbon. Attempts to induce a refined boride dispersion in melt-spun Al-Ti-B alloys have proved largely unsuccessful.