Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T07:58:20.003Z Has data issue: false hasContentIssue false

Microstructure and Interfacial Properties of Laterally Oxidized AlxGa1-xAs

Published online by Cambridge University Press:  03 September 2012

R.D. Twesten
Affiliation:
Sandia National Laboratories, Albuquerque, NM. 87185-1056, [email protected].
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM. 87185-1056, [email protected].
K. D. Choquette
Affiliation:
Sandia National Laboratories, Albuquerque, NM. 87185-1056, [email protected].
Get access

Abstract

The oxidation of high Al content AlxGa1-xAs has received much attention due to its use in oxide-aperture, vertical-cavity surface emitting lasers (VCSELs) and for passivating AlAs against environmental degradation. We have recently identified the spinel, gamma phase of Al2O3 in layers laterally oxidized in steam at 450°C for =0.98 & 0.92 and have seen evidence for an amorphous precursor to the gamma phase. At the interface with the unoxidized AlxGa1-xAs , an ~17nm amorphous phase remains which could account for the excellent electrical properties of oxide-confined VCSELs and help reduce stress concentrations at the oxide terminus.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dallessasse, J. M., Holonyak, N. Jr., Sugg, A. R., Richard, T.A. and El-Zein, N., Appl. Phys. Lett. 57, 2844 (1990).Google Scholar
2 Choquette, K. D., Lear, K. L., Schneider, R. P. Jr., Geib, K. M., Figiel, J. J., and Hull, R., IEEE Photonics Technol. Lett. 7,1237 (1995).Google Scholar
3 Huffaker, D.L., Deppe, D.G., Kumar, K., and Rogers, T.J., Appl. Phys. Lett. 65, 97 (1994).Google Scholar
4 Choquette, K. D., Schneider, R. P. Jr., Lear, K. L., and Geib, K. M., Electron Lett. 30, 2043 (1994).Google Scholar
5 Yang, G.M., MacDougal, M.H., Dapkus, P.D., Electron Lett. 31, 886 (1995).Google Scholar
6 Sugg, A. R., Chen, E.I., Holonyak, N., Hsieh, K.C., Baker, J.E. and Finnegan, N., J.Appl. Phys. 74, 3880 (1993).Google Scholar
7 Guha, S., Agahi, F., Pezeshki, B., Kash, J.A., Kisker, D.W. and Bojarczuk, N.A., Appl. Phys. Lett. 68, 906 (1996).Google Scholar
8 Twesten, R.D., Follstaedt, D.M., Choquette, K. D., and Schneider, R. P. Jr., Appl. Phys. Lett. 69,19 (1996).Google Scholar
9 JCPDS file 10-425.Google Scholar
10 Lippens, B.C. and Steggerda, J.J. in Physical and Chemical Aspects of Adsorbents and Catalysts, edited byLinsen, B.G. (Academic Press, London, 1970) p. 171213 Google Scholar
11 Levin, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists, (American Ceramic Society, Columbus, OH, 1970) Figure 310.Google Scholar
12 The volume per AI atom in AlAs is (3.57Å)3, while in γ-AI2O3 it is (2.85Å)3 (for gibbsite, AI(OH)3, it is (3.49Å)3).Google Scholar
13 Holonyak, H., private communication.Google Scholar
14 Choquette, K. D., Geib, K. M., Chui., H.C., Hou, H.Q., and Hull, R., Mat. Res. Soc. Symp. Proc. 412, (1996) 53.Google Scholar