Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T07:58:28.268Z Has data issue: false hasContentIssue false

Microstructure and dielectric properties of epitaxial BaTiO3 films and BaTiO3/SrTiO3 multilayers

Published online by Cambridge University Press:  11 February 2011

A. Visinoiu
Affiliation:
Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany.
R. Scholz
Affiliation:
Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany.
M. Alexe
Affiliation:
Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany.
D. Hesse
Affiliation:
Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany.
Get access

Abstract

Epitaxial BaTiO3 films and BaTiO3/SrTiO3 multilayers were grown by pulsed laser deposition (PLD) on (001)-oriented Nb-doped SrTiO3 (SrTiO3:Nb) substrates. Measurements of the dielectric properties were performed comparing BaTiO3 films and BaTiO3/SrTiO3 multilayers of different number of individual layers, but equal overall thickness. The dielectric loss saturates for a thickness above 300 nm, and linearly decreases with decreasing film thickness below a thickness of 75 nm, and it is independent on the number of multilayers, pointing to some interface effect. The thickness dependence of the dielectric constant of BaTiO3 films and BaTiO3/SrTiO3 multilayers exhibits a change in the linear slope at a thickness of 75 nm. This behavior is explained by the change observed in the morphology at a thickness of 75 nm. In order to explain the thickness dependence of the dielectric constant, two approaches are considered in this paper, viz. a “series capacitor” model and a “dead layer” model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bhide, V. G., Gonhalekar, R. T., and Shringi, S. N., J. Appl. Phys. 36, 3825 (1965).Google Scholar
2. Teowee, G., Baertlein, C. D., Kneer, E. A., Boulton, J. M., and Uhlmann, D. R., Integr. Ferro. 7, 149 (1995).Google Scholar
3. Stolichnov, I., Tagantsev, A., Setter, N., Cross, J. S., and Tsukada, M., Appl. Phys. Lett. 75, 1790 (1999).Google Scholar
4. Choi, D., Kim, B., Son, S., Oh, S., and Park, K., J. Appl. Phys. 86, 3347 (1999).Google Scholar
5. Izuha, M., Abe, K., and Fukushima, N., Jpn. J. Appl. Phys. 36, 5866 (1997).Google Scholar
6. Craciun, V. and Singh, R. K., Appl. Phys. Lett. 76, 1932 (2000).Google Scholar
7. Zhou, C. and Newns, D. M., J. Appl. Phys. 82, 3081 (1997).Google Scholar
8. Natori, K., Otani, D., and Sano, N., Appl. Phys. Lett. 73, 632 (1998).Google Scholar
9. Wurfel, P. and Batra, I. P., Phys. Rev. B 8, 5126 (1973).Google Scholar
10. Wang, Y. G., Zhong, W. L., and Zhang, P. L., Phys. Rev. B 51, 5311 (1995).Google Scholar
11. Vendik, O. G., Zubko, S. P., and Ter-Martirosayn, L. T., Appl. Phys. Lett. 73, 37 (1998).Google Scholar
12. Hwang, C. S., Lee, B. T., Kang, C. S., Lee, K. H., Cho, H. J., Hideki, H., Kim, W. D., Lee, S. I.. and Lee, M. Y., J. Appl. Phys. 85, 287 (1999).Google Scholar
13. Sinnamon, L. J., Bowman, R. M., and Gregg, J. M., Appl. Phys. Lett. 78, 1724 (2001).Google Scholar
14. Dawber, M., Sinnamon, L. J., Scott, J. F., and Gregg, J. M., Ferroelectrics 268, 455 (2002).Google Scholar
15. Visinoiu, A., Alexe, M., Lee, H. N., Zakharov, D. N., Pignolet, A., Hesse, D., and Gösele, U., J. Appl. Phys. 91, 10157 (2002).Google Scholar
16. Visinoiu, A., Scholz, R., Chattopadhyay, S., Alexe, M., and Hesse, D., Jpn. J. Appl. Phys. 41, 6633 (2002).Google Scholar
17. Hayashi, T. and Tanaka, T., Jpn. J. Appl. Phys. 33, 5277 (1994).Google Scholar
18. Yoneda, Y., Sakaue, K., and Terauchi, H., Jpn. J. Appl. Phys. 39, 4839 (2000).Google Scholar
19. Nagarajan, V., Roytburg, A., Stanishevsky, A., Prasertchoung, S., Zhao, T., Chen, L., Melngailis, J., Auciello, O., and Ramesh, R., Nature Materials 2, 42 (2003).Google Scholar
20. Ichinose, N. and Ogiwara, T., Jpn. J. Appl. Phys. 34, 5198 (1995).Google Scholar
21. Lee, W. J., Kim, H. G., and Yoon, S. G., J. Appl. Phys. 80, 5891 (1996).Google Scholar
22. Sinnamon, L. J., Saad, M. M., Bowman, R. M., and Gregg, J. M., Appl. Phys. Lett. 81, 703 (2002).Google Scholar