Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T01:29:26.435Z Has data issue: false hasContentIssue false

Microscopic Detection of DNA Hybridization using Miniaturized Diamond DNA-FETs

Published online by Cambridge University Press:  01 February 2011

Christoph E. Nebel
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, DRC, Central 2, Tsukuba, 305-8568, Japan, 81-29-861-4836, 81-29-861-2773
Hiroshi Uetsuka
Affiliation:
[email protected], Diamond Research Center, AIST, Tsukuba, 305-8568, Japan
Nianjun Yang
Affiliation:
[email protected], Diamond Research Center, AIST, Tsukuba, 305-8568, Japan
Takatoshi Yamada
Affiliation:
[email protected], Diamond Research Center, AIST, Tsukuba, 305-8568, Japan
Hideyuki Watanabe
Affiliation:
[email protected], Diamond Research Center, AIST, Tsukuba, 305-8568, Japan
Get access

Abstract

Miniaturized DNA sensitive field-effect transistors (DNA-FET) have been realized using single crystalline diamond grown by plasma-enhanced chemical vapor deposition (CVD). To bond DNA to diamond, amine linker-molecules are covalently attached by photochemical means to H-terminated diamond surfaces. Using hetero-bifunctional cross-linker and thiol-modified single-strand (ss) cancer marker DNA (CK20), the gate of diamond FETs is modified to sense hybridization of DNA, forming double-strand (ds) DNA molecules on the gate. The density of DNA bonded to diamond has been adjusted to about 1012 cm−2 and the experiments have been performed in phosphate buffer with different ionicity to control the Debye length of the Helmholtz layer. By hybridization, a gate-potential shift of 64 mV is detected in case of the 100 Å Debye lengths, while 46 mV is detected for 10 Å. This is discussed with respect to DNA related variations of charge and pH by hybridization. Time resolved experiments reveal exponential hybridization dynamics with a time constant of 600 s. The sensitivity limit of our experiment is about 1 nM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fujishima, A., Einaga, Y., Rao, T.N., Tryk, D.A. 2005 Diamond Electrochemistry, Elsevier/BKC-Tokyo.Google Scholar
2. Tang, L., Tsai, C., Gerberich, W.W., Kruckeberg, L., Kania, D.R., Biomaterials 1995, 16, 483.Google Scholar
3. Chong, K.F., Loh, K.P., Vedula, S.R.K., Lim, C.T., Sternschulte, H., Steinmueller, D., Sheu, F.-S., Zhong, Y.L., Langmuir 2007, 23, 56155621 Google Scholar
4. Nebel, C.E., Ristein, J. (editors) 2003, Thin-film diamond I, Semiconductors and Semimetals Vol. 76, Elsevier Academic Press.Google Scholar
5. Yang, W., Auciello, O., Butler, J.E., Cai, W., Carlisle, J.A., Gerbi, J.E., Gruen, D.M., Knickerbocker, T., Lasseter, T.L., Russell, Jr, J.N., , Smith, L.M., Hamers, R.J., Nature Materials 2002, 1, 253.10.1038/nmat779Google Scholar
6. Yang, J.-H., Song, K.-S., Kuga, S., Kawarada, H., Jap. J. Appl. Phys. 2006, 45 (42), L1114.Google Scholar
7. Wang, J., Firestone, M.A., Auciello, O., Carlisle, J.A., Langmuir 2004, 20, 11450.Google Scholar
8. Takahashi, K.; Tanga, M.; Takai, O.; Okamura, H., Bio Industry 2000, 17(6), 44.Google Scholar
9. Haertl, A., Schmich, E., Garrido, J.A., Hernando, J., Catharino, S.C.R., Walter, S., Feuler, P., Kromka, A., Steinmueller, D., Stutzmann, M., Nature Materials 2004, 3, 736.Google Scholar
10. Gu, H., Su, X.D., Loh, K. P. J., Phys. Chem. B 2005, 109, 13611.Google Scholar
11. Zhong, Y.L., Chong, K.F., May, P.W., Chen, Z.-K., Loh, K.P., Langmuir 2007, 23, 5824.Google Scholar
12. Nebel, C.E., Rezek, B., Shin, D., Watanabe, H., phys. stat. sol. (a) 2006, 203 (13) 3273.Google Scholar
13. Chakrapani, V., Angus, J.C., Anderson, A.B., Wolter, S.D., Stoner, B.R., Sumanasekera, G.U., Science 2007, 318, 1424.Google Scholar
14. Nebel, C.E., Science 2007, 318, 1391.Google Scholar
15. Song, K.-S., Zhang, G.-J., Nakamura, Y., Furukawa, K., Hiraki, T., Yang, J.-H., Funatsu, T., Ohdomari, I., Kawarada, H., Phys.Rrev. E 2006, 74, 041919.10.1103/PhysRevE.74.041919Google Scholar
16. Nebel, C.E., Shin, D., Takeuchi, D., Yamamoto, T., Watanabe, H., Nakamura, T., Langmuir 2006, 22 (13), 5645.10.1021/la052685sGoogle Scholar
17. Nichols, B.M., Butler, J.E., Russel, Jr, J.N., , Hamers, R.J., J. Phys. Chem. B 2005, 109 (44), 20938.Google Scholar
18. Nebel, C.E., Rezek, B., Shin, D., Uetsuka, H., Yang, N., J. Phys. D: Appl. Phys. 2007, 40, 6443.10.1088/0022-3727/40/20/S21Google Scholar
19. Poghossian, A., Cherstvy, A., Ingebrandt, S., Offenhaeusser, A., Schoening, M.J., Sensors and Act. B 2005, 111–112, 470.Google Scholar