Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-07T22:28:11.071Z Has data issue: false hasContentIssue false

Micro-Raman Study of Charge Carrier Distribution and Cathodoluminescence Microanalysis of Porous gap Membranes

Published online by Cambridge University Press:  10 February 2011

I. M. Tiginyanu
Affiliation:
Technical University of Moldova, MD-2004 Chisinau, Moldova, [email protected]
M. A. Stevens Kalceff
Affiliation:
Microstructural Analysis Unit, University of Technology, Sydney, Australia
A. Sarua
Affiliation:
TU Bergakademie Freiberg, D-09596 Freiberg, Germany
G. Irmer
Affiliation:
TU Bergakademie Freiberg, D-09596 Freiberg, Germany
J. Monecke
Affiliation:
TU Bergakademie Freiberg, D-09596 Freiberg, Germany
O. Cojocari
Affiliation:
Technical University of Moldova, MD-2004 Chisinau, Moldova, [email protected]
H. L. Hartnagel
Affiliation:
Technische Universittit Darmstadt, D-64283 Darmstadt, Germany
Get access

Abstract

Porous layers and free-standing membranes were fabricated by anodic etching of n-GaP substrates in a sulphuric acid solution. Micro-Raman analysis of the interaction between the longitudinal optical phonons and plasmons in porous membranes allowed us to obtain specific information about the electro-optical properties of microstructured GaP. In particular, apart from the carrier exhausted areas surrounding the pores, the existence of conductive regions was demonstrated. A comparative analysis of the secondary electron and panchromatic cathodoluminescence (CL) images evidenced an increase in the emission efficiency caused by porosity. Data concerning the spectral distribution of CL in bulk and porous samples are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cullis, A.G., Canham, L.T., and Calcott, P.D.J., J. Appl. Phys. 82, 909(1997).Google Scholar
2. Tiginyanu, I.M., Irmer, G., Monecke, J., and Hartnagel, H.L., Phys. Rev. B 55, 6739(1997).Google Scholar
3. Tiginyanu, I.M., Irmer, G., Monecke, J., Vogt, A., and Hartnagel, H.L., Semicond. Sci. & Technol. 12, 491(1997).Google Scholar
4. Kikuno, E., Amiotti, M., Takizawa, T., and Arai, S., Jpn. J. Appl. Phys. 34, 177(1995).Google Scholar
5. Tiginyanu, I.M. and Hartnagel, H.L., GAAS'99 Conference Proceedings, pp. 194199. Munich, Germany, October 4–5, 1999.Google Scholar
6. Erne, B.H., Vanmeakelbergh, D., and Kelly, J.J., J. Electrochem. Soc. 143, 305(1996).Google Scholar
7. Tiginyanu, I.M., Schwab, C., Grob, J.-J., Prevot, B., Hartnagel, H.L., Vogt, A., Irmer, G., and Monecke, J., Appl. Phys. Lett. 71, 3829(1997).Google Scholar
8. Prevot, B. and Wagner, J., Prog. Crystal Growth & Charact. 22, 245(1991).Google Scholar
9. Abstreiter, G., Cardona, M., and Pinczuk, A., in Light Scattering Solids, edited by Cardona, M. (Springer, Berlin, 1975), p. 147.Google Scholar
10. Mermin, N.D., Phys. Rev. B 1, 2362(1970).Google Scholar
11. Anedda, A., Serpi, A., Karavanskii, V.A., Tiginyanu, I.M., and Ichizli, V.M., Appl.Phys. Lett. 67, 3316(1995).Google Scholar
12. Kuriyama, K., Ushiyama, K., Ohbora, K., Miyamoto, Y., amd Takeda, S., Phys. Rev. B, 58, 1103(1998).Google Scholar