Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T03:18:40.032Z Has data issue: false hasContentIssue false

Micromagnetics Simulation of Asymmetric Pseudo-Spin Valve Dots

Published online by Cambridge University Press:  01 February 2011

N. Dao
Affiliation:
Department of Chemistry/AMRI, University of New Orleans, New Orleans, LA 70148, U.S.A.
C. A. Ross
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
F. J. Castaño
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
M. J. Donahue
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899, U.S.A.
S. L. Whittenburg
Affiliation:
Department of Chemistry/AMRI, University of New Orleans, New Orleans, LA 70148, U.S.A.
Get access

Abstract

We present simulation results for Ni79Fe21 (5 nm)/Cu (3 nm)/Co (4nm) pseudo-spin valves. These simulations have been conducted on several different aspect ratios of rectangular dots. Distinct switches of the two magnetic layers were observed. At smaller aspect ratios, magnetization reversal proceeds through a leaf state in the soft layer and a flower state in the hard layer. For larger aspect ratios, reversal proceeds by nucleation and annihilation of domain walls. Our simulations show a reasonable agreement with the experimental results. Differences between the experimental and simulation results are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wolf, S. A. and Treger, D., IEEE Trans. Magn. 36, 2748 (2000).Google Scholar
2. Tehrani, S., Engel, B., Slaughter, J. M., Chen, E., DeHerrera, M., Durlam, M., Naji, P., Whig, R., Janesky, J., and Calder, J., IEEE Trans. Magn. 36, 2752 (2000).Google Scholar
3. Gidor, S., Runge, B.-U., Marley, A. C., and Parkin, S. S. P., Science 281, 797 (1998).Google Scholar
4. Daughton, J. M.. Pohm, A. V., Fayfield, R. T., and Smith, C. H., J. Phys. D 32, R169 (1999).Google Scholar
5. Castaño, F. J., Hao, Y., Hwang, M., Ross, C. A., Vogeli, B., Smith, H. I., and Haratani, S., Appl. Phys. Lett. 79, 1504 (2001).Google Scholar
6. Albert, F. J., Katine, J. A., Buhrman, R. A., and Ralph, D. C., Appl. Phys. Lett. 77, 3809 (2000).Google Scholar
7. Castaño, F. J., Hao, Y.. Ross, C. A., Vogeli, B., Smith, H. I., and Haratani, S., J. Appl. Phys. 91, 7317 (2002).Google Scholar
8. Donahue, M. J. and Porter, D. G., Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD (Sept 1999).Google Scholar
9. McCurrie, R. A., Ferromagnetic Materials: Structure and Properties, Academic Press, San Diego 1994, p. 29.Google Scholar
10. Newell, A. J., Williams, W., and Dunlop, D. J., J. Geophys. Res. 98, 9551 (1993).Google Scholar
11. Cowburn, R. P. and Welland, M. E., Phys. Rev. B 58, 9217 (1998).Google Scholar
12. Gadbois, J., Zhu, J.-G., Vavra, W., and Hurst, A., IEEE Trans. Magn. 34, 1066 (1998).Google Scholar
13. Dao, N., Hao, Y., Ross, C. A., Malkinski, M. L., Wang, J.-Q., and Whittenburg, S. L., J. Appl. Phys. 91, 8293.Google Scholar
14. McMichael, R. D., Donahue, M. J., Porter, D. G., and Eicke, J., J. Appl. Phys. 89, 7603 (2001); A. Hubert and W. Rave, Phys. Stat. Sol. B 211, 815 (1999).Google Scholar
15. Castaño, F. J., Hao, Y., Haratani, S., Ross, C. A., Vogeli, B., Walsh, M., and Smith, H. I., IEEE Trans. Magn. 37, 2073 (2001).Google Scholar
16. Tanuma, T., Takahashi, S., Maeda, A., Kume, M., and Kuroki, K., IEEE Trans. Magn. 31, 3955 (1995).Google Scholar