Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T02:33:22.096Z Has data issue: false hasContentIssue false

Microfluidic Synthesis and Functional Patterning for Advanced Nanotechnology

Published online by Cambridge University Press:  01 February 2011

Kyung Choi*
Affiliation:
[email protected], University of California, Chemistry, Irvine, California, 92697, United States
Get access

Abstract

In this study, we introduce ‘molecularly imprinted polymer' (MIP) system, which has receptor or binding sites with specific molecular recognitions.

Due to the receptor or binding sites in MIP's systems, it can be used for developing bio- or chemical sensors.

To fabricate bio-sensors, bio-molecules have been incorporated into MIP's systems as template molecules, but some bio-molecules are sensitive thus denatured during engineering processes.

For this reason, bio-sensor fabrications by conventional UV photolithography have shown some limitations.

We demonstrate here a photopatterning process, a micromolding in capillary technique (MIMIC) technique, to photopatterning a MIP's system containing a bio-molecule template.

The MIMIC technique uses the photo-masks for photopolymerizing MIP's monomer solutions.

The photomask is based on silicon rubbers, which are optically transparent and also minimize any damages of sensitive bio-molecules during photo-polymerizations. For visualizing lithographic performances of MIP's systems, we used a fluorescent template molecule to present a comparative result of MIP's photo-cured patterns.

It shows a clear different in MIP's patterns with and without the template.

We also employed a microfluidic approach to produce micro-sized MIP's particles, which contribute to increase the sensitivity of bio-molecule sensors/devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Xia, Y. and Whitesides, G. M., Angew. Chem. Int. Ed. 37, 550 (1998).Google Scholar
2 Wallraff, G. M. and Hinsberg, W. D., Chem. Rev. 99, 1801 (1999).Google Scholar
3 Xia, Y., Rogers, J. A., Paul, K. E., and Whitesides, G. M., Chem. Rev. 99, 1823 (1999).Google Scholar
4 Michel, B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Juncker, D., Kind, H., Renault, J. P., Routhuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R., and Wolf, H., IBM Journal of Research and Development 45, 697 (2001).Google Scholar
5 Balasubramanian, K., Sordan, R., Burghard, M., and Kern, K., Nano Lett. 4, 827 (2004).Google Scholar
6 Chan, E. M., Mathies, R. A., and Alivisatos, A. P., Nano Lett. 3, 199 (2003).Google Scholar
7 Shestopalov, I., Tice, J. D., and Ismagilov, R. F., Lab Chip 4, 316 (2004).Google Scholar
8 Keren, K., Berman, R. S., Buchstab, E., Sivan, U., and Braun, E., Science 302, 5649 (2003).Google Scholar
9 Lefenfeld, M., Blanchet, G., and Rogers, J. A., Adv. Mater. 15, 1188 (2003).Google Scholar
10 Thorsen, T., Roberts, R. W., Arnold, F. H., and Quake, S. R., Phys. Rev. Lett. 86, 4163 (2001).Google Scholar
11 Thorsen, T., Maerkl, S. J., and Quake, S. R., Science 298, 580 (2002).Google Scholar
12 Rolland, J. P., Dam, R. M. Van, Schorzman, D. A., Quake, S. R., and Desimone, J. M., J. Am. Chem. Soc. 126, 2322 (2004).Google Scholar
13 Odom, T. W., Thalladi, TV. R., Love, J. C., and Whitesides, G. M., J. Am. Chem. Soc. 124, 12112 (2002).Google Scholar
14 Choi, K. M. and Rogers, J. A., J. Am. Chem. Soc. 125, 4060 (2003).Google Scholar
15 Choi, K. M., J. Phys. Chem. 109, 21525 (2005).Google Scholar
16 Shea, K. J. and Spivac, D. A., J. Am. Chem. Soc. 115, 3368 (1993).Google Scholar
17 Spivac, D. A., Gilmore, M. A., and Shea, K. J., J. Am. Chem. Soc. 119, 4388 (1997).Google Scholar
18 Conrad, P. G., Nishimura, P. T., Ahrene, D., Schwartz, B. J., Wu, D., Fang, N., Zhang, X., Roberts, M. J., and Shea, K. J., Advanced Materials 15, 1541 (2003).Google Scholar
19 Wulff, G., Angew. Chem. Int. Ed. Engl. 34, 1812 (1995).Google Scholar
20 Mosbach, K. and Mayes, A. G., Trends Anal. Chem. 16 321 (1997).Google Scholar