Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T12:10:47.076Z Has data issue: false hasContentIssue false

Micro- and Nano-Fabrication of Polymer Based Microfluidic Platforms for BioMEMS Applications

Published online by Cambridge University Press:  01 February 2011

Siyi Lai
Affiliation:
Department of Chemical Engineering, The Ohio State University Columbus, OH 43210, USA
L. James Lee
Affiliation:
Department of Chemical Engineering, The Ohio State University Columbus, OH 43210, USA
Liyong Yu
Affiliation:
Department of Chemical Engineering, The Ohio State University Columbus, OH 43210, USA
Kurt W. Koelling
Affiliation:
Department of Chemical Engineering, The Ohio State University Columbus, OH 43210, USA
Marc J. Madou
Affiliation:
Nanogen Inc., San Diego, CA 92121, USA
Get access

Abstract

In this paper, we review the approaches developed in our laboratory for polymer-based micro/nanofabrication. For fabrication of microscale features, UV-LIGA (UV-lithography, electroplating, and molding) technology was applied for low-cost mass production. For fabrication of sub-micron or nanoscale features, a novel nano-manufacturing protocol is being developed. The protocol applies a novel nano-lithography imprinting process on an ultra-precision motion-control station. It is capable of economically producing well-defined pores or channels at the nanometer scale on thin polymer layers. The formed thin layers can be used as nano-filters for chemical or bio-separation. They can also be integrated into miniaturized devices for cell immunoprotection or tissue growth. For bonding of polymer-based microfluidic platforms, a novel resin-gas injection-assisted technique has been developed that achieves both bonding and surface modification. This new approach can easily seal microfluidic devices with micron and sub-micron sized channels without blocking the flow path. It can also be used to modify the channel shape, size, and surface characteristics (e.g., hydrophilicity, degree of protein adsorption). By applying the masking technique, local modification of the channel surface can be achieved through cascade resin-gas injection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Freemantle, M., Chem. Eng. News, 27, (1999).Google Scholar
2. Snyder, M. R., Modern Plastics, 85, January (1999).Google Scholar
3. Madou, M., Fundamentals of Microfabrication, (CRC Press, Boca Raton, 1997).Google Scholar
4. Colton, C.K., Cell Transplantation, 4(4), 415 (1995).Google Scholar
5. Kim, K.J. and Stevens, P.V., J. Membrane Science, 123, 303 (1997).Google Scholar
6. Desai, T.A., Hansford, D.J., Kulinsky, L., Nashat, A.H., Rasi, G., Tu, J., Wang, Y., Zhang, M. and Ferrari, M., Biomedical Microdevices, 2(1), 11(1999).Google Scholar
7. Chou, S.Y., Krauss, P.R. and Renstrom, P.J., Science, 272, 85 (1996).Google Scholar
8. Seidel, P., “Next Generation Lithography”, 7th Edition, Semiconductor Fabtech (1998).Google Scholar
9. Martin, C.R.K. and Snow, E.S., Microelectron Eng., 32, 173 (1996).Google Scholar
10. Wilder, K., Quate, C.F., Singh, B. and Kyser, D.F., J. Vac. Sci. Technol. B16(6), 3864 (1998).Google Scholar
11. Sugimura, H., Takai, O. and Nakagiri, N., J. Vac. Sci. Technol., B17(4), 1605 (1999).Google Scholar
12. Xia, Y., Rogers, J.A., Paul, K.E. and Whitesides, G.M, Chem. Rev., 99, 1823 (1999).Google Scholar
13. Becker, H. and Gartner, C., Electrophoresis 21, 12 (2000).Google Scholar
14. Gandhi, K., Dubrow, R.S., and Bousse, L.J., US Patent No. 6 123798 (2000).Google Scholar
15. Lee, L.J., Madou, M.J., Koelling, K.W., Daunert, S., Lai, S., Koh, C.G., Juang, Y-J, Lu, Y., and Yu, L., Biomedical Microdevice, 3(4), 339 (2001).Google Scholar
16. Robert, M.A., Rossier, J.S., Bercier, P., and Girault, H., Anal. Chem. 69, 2035(1997).Google Scholar
17. Lum, P. and Greenstein, M., US Patent No. 5 932 315 (1999).Google Scholar
18. Dreuth, H. and Heiden, C., Materials Science and Engineering, C5, 227 (1998).Google Scholar
19. Madou, M.J., Lee, L.J., Koelling, K.W., Lai, S., Koh, C. G., Juang, Y-J., Yu, L. and Lu, Y., Annu. Tech. Conf. - Soc. Plast. Eng. 59th (Vol. 3), 2534 (2001).Google Scholar
20. Glasgow, I. K., Beebee, D. J., and White, V. E., Sensors and Materials, 11(5), 269 (1999).Google Scholar
21. Chen, J.H. and Ruckenstein, E., J. Colloid and Interface Sci. 142(2), 544 (1991).Google Scholar
22. Brady, R.F., Chem. Ind., 219 (1997).Google Scholar
23. Lyman, D.J., Muir, W.M., and Lee, I.J., Trans. Amer. Soc. Artif. Int. Organs, 11, 301 (1965).Google Scholar
24. Kiss, E., Samu, J., Toth, A., and Bertoti, I., Langmuir 12, 1651(1996).Google Scholar
25. Desai, T.A., Hansford, D., Kulinsky, L., Nashat, A.H., Rasi, G., Tu, J., Wang, Y., Zhang, M., and Ferrari, M., Biomedical Microdevices 2(1), 11 (1999).Google Scholar
26. Alcantar, N.A., Aydil, E.S., and Israelachvili, J.N., J. Biomed. Mater. Res. 51(3), 343 (2000).Google Scholar
27. Juang, Y-J., Lee, L.J., and Koelling, K.W., Poly. Eng. Sci. (in press, 2002).Google Scholar
28. Yu, L., Koh, C. C., Lee, L. J., Koelling, K. W., and Madou, M. J., Poly. Eng. Sci. (in press, 2002).Google Scholar
29. Madou, M.J., Lee, L.J., Daunert, S., Lai, S., and Shih, C.H., Biomedical Microdevices, 3(3), 245 (2001).Google Scholar
30. Juang, Y-J., Lee, L.J., and Koelling, K.W., Poly. Eng. Sci. (in press, 2002).Google Scholar
31. G'Sell, C., and Souahi, A., J. Eng. Mater. Tech., 119, 223 (1997).Google Scholar
32. Dam, T.H. and Pantano, P., Review of Sci. Inst., 70(10), 3982 (1999).Google Scholar
33. Girifalco, L. A. and Good, R. J., J. Phys. Chem., 61, 904 (1957).Google Scholar