Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T07:01:20.183Z Has data issue: false hasContentIssue false

A method to Generate Biomimetic Superhydrophobic Engineering Surfaces

Published online by Cambridge University Press:  01 February 2011

Yilei Zhang
Affiliation:
[email protected], Iowa State University, Mechanical Engineering, 2025 Black Engineeering Building, Ames, IA, 50011, United States
Sriram Sundararajan
Affiliation:
[email protected], Iowa State University, Mechanical Engineering, Ames, IA, 50011, United States
Get access

Abstract

A versatile hybrid processing method that combines electrostatic deposition of microparticles and subsequent anisotropic plasma etching is described that can generate superhydrophobic engineering surfaces with tunable bimodal roughness and a thin hydrophobic fluorocarbon film. These surfaces exhibit contact angles with water of more than 160°.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Barthlott, W. and Neinhuis, C., Planta 202 (1), 1 (1997).Google Scholar
2 Cheng, Y. T., Rodak, D. E., Wong, C. A. et al. , Nanotechnology 17 (5), 1359 (2006).Google Scholar
3 Feng, X. J. and Jiang, L., Advanced Materials 18 (23), 3063 (2006).Google Scholar
4 Ji, J., Fu, J., and Shen, J., Advanced Materials 18 (11), 1441 (2006); S. Wang, L. Feng, and L. Jiang, Advanced Materials 18 (6), 767 (2006); N. Zhao, J. Xu, Q. D. Xie et al., Macromolecular Rapid Communications 26 (13), 1075 (2005); G. Zhang, D. Y. Wang, Z. Z. Gu et al., Langmuir 21 (20), 9143 (2005); Q. D. Xie, G. Q. Fan, N. Zhao et al., Advanced Materials 16 (20), 1830 (2004); Akira Nakajima, Akira Fujishima, Kazuhito Hashimoto et al., Advanced Materials 11 (16), 1365 (1999).Google Scholar
5 Zhu, L. B., Xiu, Y. H., Xu, J. W. et al., Langmuir 21 (24), 11208 (2005); K. K. S. Lau, J. Bico, K. B. K. Teo et al., Nano Letters 3 (12), 1701 (2003).Google Scholar
6 Genzer, J. and Efimenko, K., Science 290 (5499), 2130 (2000).Google Scholar
7 Hozumi, A. and Takai, O., Thin Solid Films 303 (1-2), 222 (1997).Google Scholar
8 Hatada, R. and Baba, K., Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 148 (1-4), 655 (1999).Google Scholar
9 Madou, Marc J., Fundamentals of Microfabrication, 2nd ed. (CRC Press, Boca Raton, Florida, 2002).Google Scholar
10 Adamczyk, Zbigniew, Szyk-Warszynska, Lilianna, Zembala, Maria et al., Colloids and Surfaces A: Physicochem. Eng. Aspects 235, 65 (2004).Google Scholar
11 Zhang, Yilei and Sundararajan, Sriram, Applied Physics Letters 88 (14), 141903 (2006).Google Scholar
12 Chandrasekaran, S. and Sundararajan, S., Surface & Coatings Technology 188-89, 581 (2004).Google Scholar
13 Zhuang, Yan Xin and Menon, Aric, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23 (3), 434 (2005).Google Scholar
14 Joshi, P. P., Pulikollu, R., Higgins, S. R. et al., Applied Surface Science 252 (16), 5676 (2006).Google Scholar
15 Zhang, Yilei and Sundararajan, Sriram, Journal of applied physics 97, 10356 (2005).Google Scholar
16 Bartell, F. E. and Shepard, J. W., Journal of Physical Chemistry 57 (2), 211 (1953); C. W. Extrand, Langmuir 18 (21), 7991 (2002); C. W. Extrand, Langmuir 19 (9), 3793 (2003).Google Scholar
17 Shirtcliffe, N. J., Aqil, S., Evans, C. et al. , Journal of Micromechanics and Microengineering 14 (10), 1384 (2004).Google Scholar