Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T11:56:20.562Z Has data issue: false hasContentIssue false

Metastable Variations of the Fill Factor in CIGS Thin Film Solar Cells

Published online by Cambridge University Press:  31 January 2011

Aleksander Urbaniak
Affiliation:
[email protected], Warsaw University of Technology, Faculty of Physics, Warsaw, Poland
Małgorzata Igalson
Affiliation:
Mał[email protected], Warsaw University of Technology, Faculty of Physics, Warsaw, Poland
Get access

Abstract

We investigate the origin of fill factor changes induced by reverse bias treatment. Evolution of current-voltage characteristics have been measured during application of reverse voltage bias. Two different cell behaviors have been identified. At elevated temperatures one kind of the devices strongly deteriorates and exhibit so called double diode behavior. On the other hand, in the same conditions another cells keep their fill factor almost constant. We correlate the fill factor changes with the kinetics of capacitance and show that although increased number of shallow acceptors itself cannot induce this severe FF deterioration, it may strongly influence position of the Fermi level at the heterointerface that in a presence of an electron barrier is crucial for the device behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zabierowski, P. Rau, U. Igalson, M. Thin Solid Films 387 (2001) p. 147.Google Scholar
2. Igalson, M. Bodegård, M., Stolt, L. Jasene, A., Thin Solid Films 431-432 (2003) p. 153.Google Scholar
3. Igalson, M. Zabierowski, P. Przado, D. Urbaniak, A. Edoff, M. Shafarman, W. N. Sol. Energy Mater. Sol. Cells 93, 1290 (2009).Google Scholar
4. Halverson, A. Nishiwaki, S. Shafarman, W. Cohen, J. D. Mater. Res. Soc. Symp. Pro Proc. c. 1012, San Francisco (2007), Y0404.Google Scholar
5. Herberholz, R. in: Thomlinson, R.D. Hill, A.E. Piklington, R.D. (Eds.), Inst. Phys. Conf. Ser. 152, 733 (1998).Google Scholar
6. Kessler, J. Bodegard, M. Hedström, J., Stolt, L. Sol. Energy Mater. Sol. Cells 67 (2001).Google Scholar
7. Shafarman, W.N. Klenk, R., McCandless, B. E., J. Appl. Phys. 79 (1996) p. 7324.Google Scholar
8. Niemegeers, A. Gillis, S. and Burgelman, M.. Proceedings 2nd World Conference on Photovoltaic Energy Conversion Conversion, Vienna, (1998), p. 1071.Google Scholar
9. Urbaniak, A. Igalson, M., Siebentritt, S. Mater.alson Res. Soc. Symp. Proc. 1012, San Francisco, (2007), Y1214.Google Scholar
10. Cwil, M. Igalson, M. Zabierowski, P. Siebentritt, S. J. Appl.Phys. 103, 063701 (2008).Google Scholar
11. Scheer, R. Luck, I. and Lewerenz, H. J., Proceedings of the 12th EPSEC, EPSEC, Amsterdam, 1994, p. 1751.Google Scholar
12. Hashimoto, Y. Takeuchi, K. and Ito, K. Appl. Phys. Lett. 67, 980 (1995).Google Scholar
13. Schulmeyer, T. Hunger, R. Klein, A. Jaegermann, W. Niki, S. Appl. Phys. Lett. 84, 16 (2004).Google Scholar
14. Niemegeers, A. Burgelman, M. Herberholz, R. Rau, U. Hariskos, D. Schock, H. W. Prog. Photovolt. Res. Appl. 6, 407 (1998).Google Scholar
15. Nakada, T. Kunioka, A. Appl. Phys. Lett. 74, 17 (1990).Google Scholar
16. Nguyen, Q. Rau, U. Mamor, M. Orgassa, K. Schock, H. W. Werner, J. H.. Proceedings of the 17th European Photovoltaic Solar Ene Energy Conferency Conferency, Munich, Germany (2001).Google Scholar
17. Nguyen, Q. Orgassa, K. Koetshchau, I., Rau, U. Schock, H. W. Thin Solid Films au, 431 (2003), p. 330.Google Scholar
18. Weinhardt, L. Heske, C. Umbach, E. Niesen, T. P. Visbeck, S. Karg, F. Appl. Phys. Lett. 84, 16 (2004).Google Scholar