Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T08:51:09.189Z Has data issue: false hasContentIssue false

Metastable Sic and SiGeC Alloys by Carbon Implantation and Solid Phase Epitaxy

Published online by Cambridge University Press:  25 February 2011

J. W. Strane
Affiliation:
Cornell University, Ithaca, NY 14853
W. J. Edwards
Affiliation:
Cornell University, Ithaca, NY 14853
J. W. Mayer
Affiliation:
CSSS, Arizona State University, Tempe, AZ 85287
H. S. Stain
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
B. R. Lee
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
B. L. Doyle
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
B. T. Piorauz
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

We demonstrate the formation of metastable Si1-yCy and Si1-y-xGexCy alloys by C ion implantation and solid phase epitaxial regrowth. Carbon was introduced into Si and SiGe layers by 5, 12 and 25 keV implants to achieve nearly uniform profiles of 0.7 and 1.4 at.% C. The 0.7 at.% C specimens exhibit the highest quality epitaxial layers after SPE regrowth, whereas in higher C concentration specimens solid phase regrowth was impeded. The localized vibrational mode of C occupying substitutional lattice sites in the diamond lattice provides a signature of the metastable phase and is used to monitor the loss of stability due to precipitation of silicon carbide. The Sic and SiGeC alloys retained substitutional carbon during 30 minute isochronal anneals up to 850°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kasper, E., Schaffler, F., Semiconductors and Semimetals vol 33, At&T Bell Laboratorie Inc., (1991).Google Scholar
2. Iyer, S. S., Eberl, K., Goorski, M. S., Legoues, F. K., Cardonne, F., and Ek, B. A., Mater. REs. Symp. 220, 581, (1991).CrossRefGoogle Scholar
3. Kennedy, E. F., Csepregi, L., Mayer, J. W., and Sigmon, T. W., J. Appl. 48, 4241, (1977).CrossRefGoogle Scholar
4. Meyerson, B. S., Appl. Phys. Lett. 48, 791 (1986).CrossRefGoogle Scholar
5. Strane, J. W., Mayer, J. W., Stein, H. S., Lee, S. R., Boyle, D. L., and Picraux, T. S., submitted Appl. Phys. Lett.Google Scholar
6. Paine, D. C., Howard, D. J., Stoffel, N. G., Horton, J. A., J. Mat. Res. 5, 1023, (1990).CrossRefGoogle Scholar
7. Baker, J. A., Tucker, T. N., Noyer, N. E., Buschert, R. C., J. Appl. Phys. 39, 4365, (1968).CrossRefGoogle Scholar