Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T08:48:59.685Z Has data issue: false hasContentIssue false

Metastable Phase Formation in Be-Nb Intermetallic Compounds

Published online by Cambridge University Press:  26 February 2011

J. L. Brimhall
Affiliation:
Pacific Northwest Laboratory, Richland, WA
L. A. Charlot
Affiliation:
Pacific Northwest Laboratory, Richland, WA
S. M. Bruemmer
Affiliation:
Pacific Northwest Laboratory, Richland, WA
Get access

Abstract

Amorphous structures or metastable crystalline phases are produced in sputter deposited Be-Nb alloys (5–15 at.% Nb) depending on the substrate temperature. The metastable phases transform to the stable Be12Nb, Be17Nb2 or Be3Nb phases on annealing at temperatures >800°C. No Be5Nb phase was found and the Be17Nb2 phase is stable to low temperature. The Be12Nb phase appeared to have a stoichiometric range of about 5.5 to 7.7 at.% Nb. The formation of the metastable phases is consistent with current models and theories.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Phase Diagrams of Binary Beryllium Alloys, ed. by Okamoto, H. and Tanner, L., ASM International, Metals Park, OH, 1987.Google Scholar
2. Binary Alloy Phase Diagrams, ed. by Massalski, T. B., ASM International, Metals Park, OH 1986.Google Scholar
3. Brimhall, J. L., Kissinger, H. E. and Wang, R., J. Mat. Sci., 16, 9941000, 1981.CrossRefGoogle Scholar
4. Tanner, L. E. and Ray, R., Acta Met., 27, 17271747, 1979.CrossRefGoogle Scholar
5. Rizzo, H. F., Tanner, L. E., Mall, M. A., McClanahan, E. D. and Massalski, T. B., in “Fundamentals of Beam-Solid Interactions and Transient Thermal Processing”, MRS, vol. 100, 81–86, 1988.Google Scholar
6. Barbee, T. W. Jr. and Keith, D. L., in “Synthesis and Properties of Metastable Phases”, ed. by Machlin, E. S. and Rowland, T. J., TMS, Warrendale, PA, 93114, 1980.Google Scholar
7. Wang, R., in “Theory of Alloy Phase Formation”, ed. by Bennett, L. H., Metallurgical Soc. of AIME, Warrendale, PA, pp. 472475, 1980.Google Scholar
8. Johnson, W. L., Cheng, Y. T., Van Russum, M. and Nicolet, M-A., Nucl. Instr. & Meth., B7/8, 657685, 1985.Google Scholar
9. Fujita, H., Hashimoto, K. and Tabata, T., Mat.Sci. and Engr., 45, 221228, 1980.CrossRefGoogle Scholar
10. Altounian, Z., Guo-hua, Tu and Strom-Olsen, J. O., J. Appl. Phys., 54, 31113118, 1983.CrossRefGoogle Scholar
11. Inal, O. T., Keller, L. and Yost, F. G., J. Mat. Sci., 15, 19471961 1980.Google Scholar
12. Gillam, E. and Rooksby, H. P., Acta Cryst., 17, 762763, 1964.CrossRefGoogle Scholar
13. Fleischer, R. L. and Field, R. D., Development Potential of Advanced Intermetallic Materials, WRDC-TR-90–4046, 1990.Google Scholar
14. Kirby, R. F., Development of the Columbium Beryllides for High-Temperature Applications, University Microfilms, Inc., Ann Arbor, MI, 69–14, 187, 1969.Google Scholar
15. Bradley, A. J. and Taylor, A., Proc. Roy. Soc., 159, 56, 1937.Google Scholar
16. Collins, D. M. and Mahar, M. C., Acta Cryst., C40, 914915, 1984.Google Scholar
17. Mahar, M. C. and Collins, D. M., Acta Cryst., C40, 912913, 1984.Google Scholar