Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T03:19:46.106Z Has data issue: false hasContentIssue false

Mechanofusion Processing of Metal-Oxide Composite Powders for Plasma Spraying

Published online by Cambridge University Press:  01 February 2011

Ricardo Cuenca-Alvarez
Affiliation:
Instituto Politécnico Nacional, CIITEC, México, D.F. 02250, Mexico
Carmen Monterrubio-Badillo
Affiliation:
Instituto Politécnico Nacional, CMP+L, México DF 07430, Mexico.
Hélêne Ageorges
Affiliation:
SPCTS-UMR 6638, University of Limoges, 87060, Limoges Cedex, France.
Pierre Fauchais
Affiliation:
SPCTS-UMR 6638, University of Limoges, 87060, Limoges Cedex, France.
Get access

Abstract

Composite particles destined to build plasma sprayed coatings, are prepared by the mechanofusion process (MF). These particles consist of a stainless steel core particle coated by finer particles of alumina. Changes induced by the MF process are monitored by SEM, DRX, and laser granulometry, revealing that the dry particle coating process is governed by agglomeration and rolling phenomena. Simultaneously, the MF performance is controlled by the operating parameters such as the compression gap, the mass ratio of host to guest particle, and the powder input rate. The mechanical energy input leads to a nearly rounded shape of the final composite particles; however, no formation of new phases or components decomposition is detected by XRD analysis. The resulting composite powder features optimal characteristics, concerning particle shape and phases distribution, to be plasma sprayed in air.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Davies, R., Powder Technology, (119), 2001, p. 4557.Google Scholar
[2] Pfeffer, R., Dave, R.N., Wei, D., Ramlakhan, M., Powder Technology, (117), 2001, p. 4067.Google Scholar
[3] Kaye, B.H., Powder Mixing 1st ed., (London, England, Chapman & Hall, 1997), p. 132147.Google Scholar
[4] Alonso, M., Satoh, M., Miyanami, K., Powder Technology, (59), 1989, p. 4552.Google Scholar
[5] Yokoyama, T., Urayama, K., Naito, M., Kato, M., KONA, (5), 1987, p. 5968.Google Scholar
[6] Cuenca Alvarez, R., Ph.D Thesis (in French), University of Limoges, France, Nov. 2003.Google Scholar
[7] Stein, J., Tenhover, M., Yokoyama, T., Ceramic Forum International / Ber.DKG, Process Engineering, vol. 79, (4), 2002, p. E11–E15.Google Scholar
[8] Fukui, T., Okawa, H., Hotta, T., Naito, M., Yokoyama, T., J. Amer. Cer. Soc., vol. 84, (1), 2001, p. 233235.Google Scholar
[9] Ito, H., Umakoshi, M., Nakamura, R., Yokoyama, T., Urayama, K., Kato, M., in Thermal Spray Coatings: Properties, Processes and Applications, (ed.) Bernecki, T.F., (pub.) ASM International Materials Park, Ohio-USA, 1991, p. 405410.Google Scholar
[10] Farnè, G;, Genel Ricciardiello, F., Kucich, L., J. Eur. Cer. Soc., vol. 19, 1999, p. 347353.Google Scholar
[11] Csanády, A., Csordás-Pintér, A., Varga, L., Tóth, L., Vincze, G., Mikrochim. Acta, (125), 1997, p. 5362.Google Scholar
[12] Egashira, M., Kato, T., Hyodo, T., Shimizu, Y., Key Engineering Materials, vol. 247, 2003, p. 427432.Google Scholar
[13] Herman, H., Chen, Z.J., Huang, C.C., Cohen, R., J. Thermal Spray Tech., (12), 1992, p.129135.Google Scholar
[14] Bernard, D., Yokota, O., Grimaud, A., Fauchais, P., Usmani, S., Chen, Z.J., Berndt, C.C., Herman, H., in Thermal Spray: Industrial Applications, (ed.) Berndt, C.C. and Sampath, S., (pub.) ASM International Materials Park, Ohio-USA, 1994, p. 171178.Google Scholar
[15] Ageorges, H., Fauchais, P., , Thin Solid Films, (370), 2000, p. 213222.Google Scholar
[16] Cuenca-Alvarez, R., Ageorges, H., Fauchais, P., Fournier, P., A, Smith, Materials Science Forum, Vol. 442, (2003), pp. 67/72.Google Scholar