Published online by Cambridge University Press: 25 February 2011
A model for diamond growth on stepped diamond (100)2×1 surfaces is proposed, involving adsorption and reaction of CH3 and H on a dimer-reconstructed surface. Surface rearrangments and the breaking of C-C dimer bonds by H and/or H2 are suggested to be important The energetics were estimated by molecular mechanics (MM3). Growth is concluded to occur predominantly by extension of dimer rows, yielding a smooth surface, due to steric and bond-strain constraints on the positions of precursor-addition reactions and the kinetic stability of type SB steps against etching.