Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T08:19:48.738Z Has data issue: false hasContentIssue false

Mechanics of quasi-1D ZnO nanostructures for energy harvesting

Published online by Cambridge University Press:  18 June 2013

Antonio Rinaldi
Affiliation:
University of L'Aquila, International Research Center for Mathematics & Mechanics of Complex System (MEMOCS), Via S. Pasquale, 04012, Cisterna di Latina (LT), Italy ENEA ,C.R. Casaccia, Via Anguillarese 301, Santa Maria di Galeria, 00123, Rome, Italy
Rodolfo Araneo
Affiliation:
Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
Marialilia Pea
Affiliation:
Institute of Photonics and Nanotechnology – CNR, Via Cineto Romano 42, 00156, Rome, Italy
Andrea Notargiacomo
Affiliation:
Institute of Photonics and Nanotechnology – CNR, Via Cineto Romano 42, 00156, Rome, Italy
Get access

Abstract

The mechanical properties of ZnO nanowires are the “enabling factor” for piezotronic nanogenerators. Examining the size effects entail the determination of both elastic (i.e. the Young’s Modulus, E) and failure strength (e.g. fracture, fatigue, buckling, etc.) properties of ZnO nanostructures for nanogenerators. An investigation directed to both types of effects is presented here for the first time. On one hand the strength size effects are pointed out and discussed in the framework of a generalized Weibull framework that is set forward for ZnO NWs. On the other hand, the implications of the size effects on elasticity properties are discussed and quantified using numerical simulations. The results demonstrate that the stiffening of smaller NWs can adversely affect the performance in a non-negligible manner, suggesting that both mechanical size-effects have to be considered for design purposes.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Z. L., Song, J. H., Science, 312, 242246 (2006)CrossRefGoogle ScholarPubMed
Wang, X. D., Song, J. H., Liu, J., Wang, Z. L., Science 316, 102105 (2007)CrossRefGoogle Scholar
Espinosa, H. D., Bernal, R. A., -Jolandan, M. M., Adv. Mater., 24, 46564675 (2012)CrossRefGoogle Scholar
Araneo, R., Lovat, G., Burghignoli, P., Falconi, C., Adv. Mater., 24, 4719–24 (2012)CrossRefGoogle Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N., Nix, W.D., Science, 305,986–89 (2004)CrossRefGoogle Scholar
Uchic, M.D., Shade, P.A., Dimiduk, D.M., Annu. Rev. Mater. Res.. 39, 361–86 (2009)CrossRefGoogle Scholar
Rinaldi, A., Licoccia, S., Traversa, E., Nanoscale, 3(3), 811 (2011)CrossRefGoogle ScholarPubMed
Rinaldi, A., Licoccia, S., Traversa, E., Sieradzki, K., Peralta, P., Davila-Ibanez, A.B., Correa-Duarte, M.A., Salgueirino, V., J. Phys. Chem. C, 114(32):13451–8 (2010)CrossRefGoogle Scholar
Rinaldi, A., Correa-Duarte, M.A., Salgueirino-Maceira, V., Licoccia, S., Traversa, E., Davila-Ibanez, A.B., Peralta, P., Sieradzki, K., Acta Mater., 58(19):64746486 (2010)CrossRefGoogle Scholar
Rinaldi, A. et al. . (in preparation)Google Scholar
Rinaldi, A., Nanoscale, 3 4817–23 (2011)CrossRefGoogle ScholarPubMed
Rinaldi, A., Krajcinovic, D., Mastilovic, S., Int. J. Damage Mech, 16(1), 5776 2007)CrossRefGoogle Scholar
Rinaldi, A., Licoccia, S., Traversa, E., Nanoscale, 3, 811824 (2011)CrossRefGoogle ScholarPubMed
Asthana, A., Momeni, K., Prasad, A., Yap, Y.K., Yassar, R.S., Nanotechnology, 22, 265712 (2011)CrossRefGoogle Scholar