Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T05:28:11.665Z Has data issue: false hasContentIssue false

Mechanical Properties of Nano-Scale Mechanically-Milled NiAl

Published online by Cambridge University Press:  15 February 2011

Timothy R. Smith*
Affiliation:
Institute for Mechanics and Materials, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0404.
Get access

Abstract

This work reports on the mechanical properties of nanocrystalline NiAI materials. Mechanically- milled NiAl with and without Al2O3 additions was forged to 94% of the theoretical density of stoicheometric NiAl at < 0.5 Tm in air. Mechanical properties were investigated by microhardness measurements and the Miniaturized Disk-Bend Test (MDBT). Analysis of the hardness data indicates that most of the compression strengthening is due to the refined microstructure. MDBT results are consistent with tensile tests indicating that the tensile strength is controlled by the strength of grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gleiter, I. H., NanoStructured Materials, 1, 1 (1992).Google Scholar
2. Milligan, W.W., Hackney, S. A., Ke, M. and Alifantis, E. C., NanoStructured Materials, 2, 267 (1993).Google Scholar
3. Haubold, T., Bohn, R., Birringer, R. and Gleiter, H., Mater. Sci. & Eng., A153, 679 (1992).Google Scholar
4. Koch, C. C., NanoStructured Materials, 2, 109 (1993).Google Scholar
5. Schneibel, J. H.. Grahle, P. and Rosler, J.. Mater. Sci. & Eng., A153 684 (1992).Google Scholar
6. Whittenberger, J. D., Arzt, E. and Luton, M. J., J. Mater. Res., 5, 271 (1989).Google Scholar
7. Dymek, S., Dollar, M., Hwang, S.J. and Nash, P., Mater. Sci. & Eng., A152, 160 (1992).Google Scholar
9. Nash, P., Ur, U. C. and Dollar, M. (Proc. 2nd Int. Conf. Struct. Appl. Mech. Alloying, Vancouver, Canada, 1993) p. 291.Google Scholar
10. Wang, L., Beck, N. and Arsenault, R. J., Mater. Sci. & Eng., A177, 83 (1994).Google Scholar
11. Haff, G. R. and Schulson, E. M., Metall. Trans. A., 13A, 1563 (1982).Google Scholar
12. Smith, T. R., in lntermetallic Matrix Composites III, edited by Graves, J. A., Bowman, R. R. and Lewandowski, J. J. (Mater. Res. Soc. Proc. 350, Pittsburgh, PA, 1994).Google Scholar
13. Smith, T. R. and Vecchio, K. S., accepted for publication in NanoStructured Materials.Google Scholar
14. Meyers, D. E., Chen, F. C., Zhang, J. and Ardell, A. J., Journal of Testing & Evaluation, 21,263 (1993).Google Scholar
15. Smith, T. R., submitted to NanoStructured Materials.Google Scholar
16. Tabor, D., Rev. Phys. Tech., 1, 145 (1970).Google Scholar
17. Hazzledine, P. M., Scripta metall. mater., 26, 57 (1992).Google Scholar
18. Bowman, R. R., Noebe, R. D., Raj, S. V. and Locci, I. E., Metall. Trans. A., 23A, 1493 (1992).Google Scholar
19. Nagpal, P. and Baker, I., Scripta metall. et mater., 24, 2381 (1990).Google Scholar
20. George, E. P. and Liu, C. T., J. Mater. Res., 5, 754(1990).Google Scholar
21. Jayaram, R. and Miller, M. K., Acta metall. mater., 42, 1561 (1994).Google Scholar
22. Vallev, R. Z., Kozlov, E. V., Ivanov, Yu. F., Lian, J., Nazarov, A. A. and Baudelet, B., Acta metall. mater., 42, 2467 (1994).Google Scholar