Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T07:44:05.371Z Has data issue: false hasContentIssue false

Mechanical Properties of Amorphous Hard Carbon Films Prepared by Cathodic ARC Deposition

Published online by Cambridge University Press:  15 February 2011

Simone Anders
Affiliation:
Lawrence Berkeley Laboratory, I Cyclotron Road, Berkeley, CA 94720
André Anders
Affiliation:
Lawrence Berkeley Laboratory, I Cyclotron Road, Berkeley, CA 94720
Joel W. Ager III
Affiliation:
Lawrence Berkeley Laboratory, I Cyclotron Road, Berkeley, CA 94720
Zhi Wang
Affiliation:
Lawrence Berkeley Laboratory, I Cyclotron Road, Berkeley, CA 94720
George M. Pharr
Affiliation:
Department of Materials Science, Rice University, Houston, TX 77251-1892
Ting Y. Tsui
Affiliation:
Department of Materials Science, Rice University, Houston, TX 77251-1892
Ian G. Brown
Affiliation:
Lawrence Berkeley Laboratory, I Cyclotron Road, Berkeley, CA 94720
C. Singh Bhatia
Affiliation:
SSD/IBM, 5600 Cottle Road, San Jose, CA 95193
Get access

Abstract

Cathodic arc deposition combined with macroparticle filtering of the plasma is an efficient and versatile method for the deposition of amorphous hard carbon films of high quality. The film properties can be tailored over a broad range by varying the energy of the carbon ions incident upon the substrate and upon the growing film by applying a pulsed bias technique. By varying the bias voltage during the deposition process specific properties of the interface, bulk film and top surface layer can be obtained. We report on nanoindentation and transmission electron microscopy studies as well as stress measurements of cathodic-arc amorphous hard carbon films deposited with varied bias voltage. The investigations were performed on multilayers consisting of alternating hard and soft amorphous carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] McKenzie, D. R., Muller, D., Pailthorpe, B. A., Wang, Z. H., Kravtchinskaia, E., Segal, D., Lukins, P. B., Martin, P. J., Amaratunga, G., Gaskell, P. H., and Saeed, A., Diamond Relat. Mater. 1, 51 (1991).Google Scholar
[2] Aksenov, I. I. and Strel'nitskii, V. E., Surf. Coat. Technol. 47, 98 (1991).Google Scholar
[3] Falabella, S., Boercker, D. B., and Sanders, D. M., Thin Solid Films 236, 82 (1993).Google Scholar
[4] Lossy, R., Pappas, D. L., Roy, R. A., Cuomo, J. J., and Sura, V. M., Appl. Phys. Lett. 61, 171 (1992).Google Scholar
[5] Fallon, P. J., Veerasamy, V. S., Davis, C. A., Robertson, J., Amaratunga, G. A. J., Milne, W. I., and Koskinen, J., Phys. Rev. B 48, 4777 (1993).Google Scholar
[6] Anders, S., Anders, A., Brown, I. G., Wei, B., Komvopoulos, K., Ager, J. W. III, and Yu, K. M., Surf. Coat. Technol. 68/69, 388 (1994).Google Scholar
[7] Coil, B. F., Sathrum, P., Aharonov, R., and Tamor, M. A., Thin Solid Films 209, 165 (1992).Google Scholar
[8] Anders, S., Anders, A., and Brown, I. G., J. Appl. Phys. 74, 4239 (1993).Google Scholar
[9] Anders, A., Anders, S., and Brown, I. G., Plasma Sources Sci. Technol. 4, 1 (1995).Google Scholar
[10] Cuomo, J. J., Pappas, D. L., Bruley, J., Doyle, J. P., and Saenger, K. L., J. Appl. Phys. 70, 1706 (1991).Google Scholar
[11] Ager, J. W. III, Anders, S., Anders, A., and Brown, I. G., “Effect of Intrinsic Growth Stress on the Raman Spectra of Vacuum-arc-deposited Amorphous Carbon Films,” Appl. Phys. Lett., to be published.Google Scholar
[12] Pharr, G. M., Callahan, D. L., McAdams, S. D., Tsui, T. Y., Anders, S., Anders, A., Ager, J. W. III, and Brown, I. G., “Mechanical Properties and Structure of Very Hard Carbon Films Produced by Cathodic Arc Deposition,” submitted to Appl. Phys. Lett.Google Scholar
[13] Biersack, J. P., Berg, S., and Nender, C., Nucl. Instrum. Methods Phys. Res. B 59/60, 21 (1991).Google Scholar
[14] Oliver, W. C. and Pharr, G. M., J. Mater Res. 7, 1564 (1992).Google Scholar
[15] Windischman, H., Epps, G. F., Cong, Y., and Collins, R. W., J. Appl. Phys. 69, 2231 (1991).Google Scholar
[16] Chou, T. C., Nieh, T. G., Tsui, T. Y., Pharr, G. M., and Oliver, W. C., J. Mater. Res. 7, 2765 (1992).Google Scholar
[17] Cammarata, R. C., Schlesinger, T. E., Kim, C., Qadri, S. B., and Edelstein, A. S., Appl. Phys. Lett. 56, 1862 (1990).Google Scholar
[18] Scanlon, M. R., Cammarata, R. C., Keavney, D. J., Freeland, J. W., Walker, J. C., and Hayzelden, C., Appl. Phys. Lett. 66, 46 (1995).Google Scholar
[19] Tamor, M. A., Vassel, W. C., and Carduner, K. R., Appl. Phys. Lett. 58, 592 (1991).Google Scholar
[20] Tamor, M. A. and Vassel, W. C., “Raman “Fingerprinting” of Amorphous Carbon Films,” J. Appl. Phys., to be published.Google Scholar
[21] McKenzie, D. R., Muller, D., and Pailthorpe, B. A., Phys. Rev. Lett. B 67, 773 (1991).Google Scholar
[22] Franceschini, D. F., Achete, C. A., and Freire, F. L., Jr., Appl. Phys. Lett. 60, 3229 (1992).Google Scholar