Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:27:41.277Z Has data issue: false hasContentIssue false

Mechanical Properties and Fracture Dynamics of Silicene Membranes

Published online by Cambridge University Press:  16 September 2013

Tiago Botari
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
Eric Perim
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
P. A. S. Autreto
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
Ricardo Paupitz
Affiliation:
Departamento de Física, IGCE, Universidade Estadual Paulista, UNESP, 130506-900, Rio Claro, SP, Brazil.
Douglas S. Galvao
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
Get access

Abstract

The advent of graphene created a new era in materials science. Graphene is a two-dimensional planar honeycomb array of carbon atoms in sp2-hybridized states. A natural question is whether other elements of the IV-group of the periodic table (such as silicon and germanium), could also form graphene-like structures. Structurally, the silicon equivalent to graphene is called silicene. Silicene was theoretically predicted in 1994 and recently experimentally realized by different groups. Similarly to graphene, silicene exhibits electronic and mechanical properties that can be exploited to nanoelectronics applications.

In this work we have investigated, through fully atomistic molecular dynamics (MD) simulations, the mechanical properties of single-layer silicene under mechanical strain. These simulations were carried out using a reactive force field (ReaxFF), as implemented in the LAMMPS code. We have calculated the elastic properties and the fracture patterns.

Our results show that the dynamics of the whole fracturing processes of silicene present some similarities with that of graphene as well as some unique features.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carbon Nanotube Science, Peter J. F. Harris, Cambridge University Press, Cambridge(2009).Google Scholar
Baughman, R., Eckhardt, H., Kertesz, M., J. Chem. Phys. 87, 6687 (1987).CrossRefGoogle Scholar
Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Phys. Rev. B 68, 035430 (2003).CrossRefGoogle Scholar
Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Nanotechnology 15, S142 (2004).CrossRefGoogle Scholar
Novoselov, K. S. et al. ., Science 306, 666 (2004).CrossRefGoogle Scholar
Cheng, S. H. et al. ., Phys. Rev. B 81, 205435 (2010).CrossRefGoogle Scholar
Withers, F., Duboist, M., and Savchenko, A. K., Phys. Rev. B 82, 073403 (2010).CrossRefGoogle Scholar
Takeda, K. and Shiraishi, K., Phys. Rev. B 50, 14916 (1994).CrossRefGoogle Scholar
Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., and Ciraci, S., Phys. Rev. Lett. 102, 236804 (2009).CrossRefGoogle Scholar
Nakano, H. et al. ., Angew. Chem. 118, 6451 (2006).CrossRefGoogle Scholar
Lalmi, B. et al. ., Appl. Phys. Lett. 97, 223109 (2010).CrossRefGoogle Scholar
Psofogiannakis, G. M. and Froudakis, G. E., J. Phys. Chem. C 116, 19211 (2012).CrossRefGoogle Scholar
Aufray, B. et al. ., Appl. Phys. Lett. 96, 183101 (2010).CrossRefGoogle Scholar
de Padova, P, et al. ., Appl. Phys. Lett. 96, 261905 (2010).CrossRefGoogle Scholar
Vogt, P. et al. ., Phys. Rev. Lett. 108, 155201 (2012).Google Scholar
Bianco, E. et al. ., Nano Lett. 7, 4414 (2013).Google Scholar
Friedlein, R., Fleurence, A., Ozaki, T., and Yamada-Takamura, Y., SPIE Newsroom, in press DOI: 10.1117/2.1201305.004854.CrossRefGoogle Scholar
van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A. III, J. Phys. Chem. A 105, 9396 (2001).CrossRefGoogle Scholar
Plimpton, S., J. Comp. Phys. 117, 1 (1995). http://lammps.sandia.gov/.CrossRefGoogle Scholar
Paupitz, R. et al. ., Nanotechnology 24, 035706 (2013).CrossRefGoogle Scholar
Yang, Y. and Xu, X., Comp. Mater. Sci. 61, 83 (2012).CrossRefGoogle Scholar
Pei, Q. X., Zhang, Y. W., and Shenoy, V. B., Carbon 48, 898 (2010).CrossRefGoogle Scholar
Kim, K. et al. ., Nano Lett. 12, 293 (2011).CrossRefGoogle Scholar
Koskinen, et al. ., Phys. Rev. Lett. 101, 115502 (2008).CrossRefGoogle Scholar
Koskinen, et al. ., Phys. Rev. B 80, 073401 (2009).CrossRefGoogle Scholar