Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T16:41:16.468Z Has data issue: false hasContentIssue false

Mechanical and Thermal Properties of Graphene Nanomeshes

Published online by Cambridge University Press:  21 February 2013

Newton Cunningham Braga Mostério
Affiliation:
Programa de Pós-graduação em Engenharia Metalúrgica – Escola de Engenharia Industrial e Metalúrgica de Volta Redonda (EEIMVR) – UFF, Av. dos Trabalhadores, 420, Volta Redonda, RJ, 27255-125, Brazil.
Alexandre F. Fonseca
Affiliation:
UNESP – Sao Paulo State University, Department of Physics, Bauru, Sao Paulo, Brazil Instituto de Ciências Exatas – UFF, Rua Desembargador Ellis Hermydio Figueira, 783, Bairro Aterrado, Volta Redonda, RJ, 27213-415, Brazil.
Get access

Abstract

Graphene possesses excellent mechanical, thermal and electronic properties, not to mention its optical transparency and chemical stability. Much effort has been made towards the control of its physical properties for technological applications. One way to achieve this control is by modifying graphene size and structure. Recently, in a search for the development of semiconducting graphene structures to be produced at large scale, a new structure called graphene nanomesh was synthesized by means of block copolymer lithography and other methods. Basically, a graphene nanomesh is a graphene structure made to possess a periodic array of nanoscale holes whose sizes and hole-to-hole (or neck) distances are considered as control parameters for its overall electronic properties. Although the electronic properties of graphene nanomeshes are being intensively studied, their mechanical properties are still to be investigated. This work, then, presents the first study of mechanical, structural and thermal properties of graphene nanomeshes as a function of hole and neck sizes, through atomistic molecular dynamics simulations. The dependence of the Young’s modulus and coefficient of thermal expansion of graphene nanomeshes on the hole and neck sizes will be shown.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Geim, A. K. and Novoselov, K. S., Nature Materials 6, 183 (2007).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., amd Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V. and Geim, A. K., Proc. Natl. Acad. Sci. USA 102, 10451 (2005).CrossRefGoogle Scholar
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. and Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
Bai, J., Zhong, X., Jiang, S., Huang, Y. and Duan, X., Nature Nanotechnology 5, 190 (2010).CrossRefGoogle Scholar
Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N. and de Heer, W. A., Science 312, 1191 (2006).CrossRefGoogle Scholar
Han, M. Y., Oezyilmaz, B., Zhang, Y., and Kim, P., Phys. Rev. Lett. 98, 206805 (2007).CrossRefGoogle Scholar
Balog, R., Jørgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Lægsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T. G., Hofmann, P. and Hornekær, L.. Nature Materials 9, 315 (2010).CrossRefGoogle Scholar
Park, S. and Ruoff, R. S., Nature Nanotechnology 4, 217 (2009).CrossRefGoogle Scholar
Bai, J., Zhong, X., Jiang, S., Huang, Y. and Duan, X., Nature Nanotechnology 5, 190 (2010).CrossRefGoogle Scholar
Sinitskii, A. and Tour, J. M., J. Am. Chem. Soc. 132, 14730 (2010).CrossRefGoogle Scholar
Zhang, L., Diao, S., Nie, Y., Yan, K., Liu, N., Dai, B., Xie, Q., Reina, A., Kong, J. and Liu, Z., J. Am. Chem. Soc. 133, 2706 (2011).CrossRefGoogle Scholar
Ning, G., Fan, Z., Wang, G., Gao, J., Qianc, W. and Wei, F., Chem. Commun. 47, 5976 (2011).CrossRefGoogle Scholar
Liu, L., Zhang, Y., Wang, W., Gu, C., Bai, X. and Wang, E., Adv. Mater. 23, 1246 (2011).CrossRefGoogle Scholar
Sahin, H. and Ciraci, S., Phys. Rev. B 84, 035452 (2011).CrossRefGoogle Scholar
Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B. and Sinnot, S. B., J. Phys. Condens. Matter 14, 783 (2002).CrossRefGoogle Scholar
Yakobson, B. I., Brabec, C. J. and Bernholc, J., Phys. Rev. Lett. 76, 2511 (1996).CrossRefGoogle Scholar
Srivastava, D., Wei, C. and Cho, K., Appl. Mech. Rev. 56, 215 (2003).CrossRefGoogle Scholar
Bao, W., Miao, F., Chen, Z., Zhang, H., Jang, W., Dames, C. and Ning Lau, C., Nature Nanotechnology 4, 562 (2009).CrossRefGoogle Scholar
Mounet, N. and Marzari, N., Phys. Rev. B 71, 205214 (2005).CrossRefGoogle Scholar
Humphrey, W., Dalke, A. and Schulten, K., J. Mol. Graphics 14, 33 (2006).CrossRefGoogle Scholar