Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T13:16:32.003Z Has data issue: false hasContentIssue false

Mbe Growth and Characterization of (GaAs)l−x(Si2)x and (GaAs)1−x(Si2)x/GaAs Superlattices on GaAs Substrates

Published online by Cambridge University Press:  15 February 2011

H.P. Lee
Affiliation:
Department of Electrical and Computer Engineering, University of California, Irvine 92717
F.J. Szalkowski
Affiliation:
Department of Electrical and Computer Engineering, University of California, Irvine 92717
X. Zeng
Affiliation:
Department of Electrical and Computer Engineering, University of California, Irvine 92717
J. Wolfenstine
Affiliation:
Department of Chemical and Biochemical Engineering, University of California, Irvine 92717
J. W. Ager III
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA. 94707
Get access

Abstract

Lateral compositional graded (GaAs)1-x(Si2)x alloys were deposited on GaAs substrates in a III-V molecular beam epitaxy (MBE) chamber equipped with a electron-beam Si evaporation source. Single crystal GaAs-Si alloys were formed when the deposition temperature was 600°C or higher. The alloys were characterized by Energy Dispersive X-ray Spectroscopy (EDS), Raman scattering measurement and cross-sectional Transmission Electron Microscopy (XTEM). Dislocation-free (GaAs)1-x(Si2)x films of up to x = 0.07 were deposited. For alloys with x between 0.15 < < 0.25, the morphology deteriorates and a high density of stacking faults and micro-twins were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. MBE Book by Cho, Al Google Scholar
2. Banerjee, I., Chung, D.W., and Kroemer, H., Appl. Phys. Lett. 46, 494 (1985).Google Scholar
3. Baird, R.J., Holloway, H., Tamor, M.A., Hurley, M.D., and Vassell, W.C., J. Appl. Phys. 69, 226 (1991).Google Scholar
4. Romano, L.T., Robertson, I.M., Greene, J.E., and Sundgren, J.-E., Phys. Rev. B36, 7523 (1987).Google Scholar
5. Cadien, K.C., Eltoukhy, A.H., and Green, J.E., Appl. Phys. Lett. 38, 773 (1991).Google Scholar
6. Kim, Y.-W., Mei, D.H., Lubben, D., Robertson, I., and Greene, J.E., J. Appl. Phys. 76, 1644, (1994).Google Scholar
7. Lee, H.P., Szalkowski, F., Sato, D., Liu, X., Ranalli, E. and George, T., J. Vac. Sci. Technol. B12, 1163 (1994).Google Scholar
8. Sato, D.L., Szalkowski, F.J., and Lee, H.P., Appl. Phys. Lett. 66, 1791 (1995).Google Scholar
9. Sato, D.L., Szalkowski, F.J., and Lee, H.P., Presented in 1995 Spring MRS Meeting, Symp.B2.12.Google Scholar
10. Rao, T. Sudersena and Horikoshi, Y., Mat. Res. Soc. Proceeding Vol. 222, 151, 1991.Google Scholar
11. Lo, Y.H., Bhat, R., Huang, D.M., Kosa, M.A., and Lee, T.P., Appl. Phys. Lett. 58, 1961 (1991).Google Scholar
12. Hadegawa, H., Akazawa, M., Ishii, H., and Matsuzaki, K., T. J. Vac. Sci. Technol. B7, 870, (1989).Google Scholar
13. Costa, J.C., Williamson, F., Miller, T.J., Beyzaki, K., Nathan, M.I., Mui, D.S. L., Strite, S., and Morkoc, H., Appl. Phys. Lett. 58, 382 (1991).Google Scholar
14. The compact e-beam source was manufactured by Thennionics Laboratory, Model 100-0010R/SK.Google Scholar
15. Wagner, J. and Ramsteiner, M. IEEE J. Quantum Electron. QE-25, 993 (1989).Google Scholar
16. , Murray et al. J. Appl. Phys. 66, 2589 (1989)Google Scholar
17. Brandt, O., Crook, G., Ploog, K., Bierwold, R., Hohenstein, M., Maier, M., and Wagner, J., Jpn. J. Appl. Phys. 32, L24 (1993).Google Scholar
18. Matthew, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar