Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T12:54:35.079Z Has data issue: false hasContentIssue false

Mathematical Modeling of Impingement of an Air Jet in a Liquid Bath

Published online by Cambridge University Press:  01 February 2011

J. Solórzano-López
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, México, D.F.
R. Zenit
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México., [email protected], [email protected], [email protected].
M. A. Ramírez-Argáez
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, México, D.F.
Get access

Abstract

Physical and mathematical modeling of jet-bath interactions in electric arc furnaces represent valuable tools to obtain a better fundamental understanding of oxygen gas injection into the furnace. In this work, a 3D mathematical model is developed based on the two phase approach called Volume of Fluid (VOF), which is able to predict free surface deformations and it is coded in the commercial fluid dynamics software FLUENTTM. Validation of the mathematical model is achieved by measurements on a transparent water physical model. Measurements of free surface depressions through a high velocity camera and velocity patterns are recorded through a Particle Image Velocimetry (PIV) Technique. Flow patterns and depression geometry are identified and characterized as function of process parameters like distance from nozzle to bath, gas flow rate and impingement angle of the gas jet into the bath. A reasonable agreement is found between simulated and experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wakelin, D. H.: The interaction between gas jets and the surfaces of liquids, including molten metals. Ph. D. thesis, University of London, 1966.Google Scholar
2 Lee, M., Whitney, V. and Molloy, N.: Scand. J. Metall., 30 (2001), 330.Google Scholar
3 Sharma, S. K., Hlinka, J. W. and Kern, D. W.: Iron Steelmaker, 4 (1977), 7.Google Scholar
4 Nordqist, A., Kumbhat, N., Jonsson, L. and Jonssön, P.: Steel Res., 77 (2006), 82.Google Scholar
5 Koria, S. C. and Lange, K. W.: Steel Res., 58 (1987), 421.Google Scholar
6 Qian, F., Muthasaran, R. and Farouk, B.: Metall. Mater. Trans. B, 27B (1996), 911.Google Scholar
7 Subagyo, Brooks, G. A., Coley, K. S.. and Irons, G. A.: ISIJ Int., 43 (2003), 983.Google Scholar
8 Memoli, F., Mapelli, C., Ravanelli, P. and Corbella, M.: ISIJ Int., 44 (2004), 1342.Google Scholar
9 Meidani, A. R. N., Isac, M., Richardson, A., Cameron, A. and Guthrie, R. I. L.: ISIJ Int., 44 (2004) 1639.Google Scholar
10 Peaslee, K. D. and Robertson, D. G. C.: EPD Congress, TMS, Warrendale, PA, 1994, 1129.Google Scholar
11 Gu, L. and Irons, G.: Electric Furnace Conf. Proc., Iron & Steel Soc., Pittsburgh, PA, 1999, 269.Google Scholar
12 Ersson, M., Tilliander, A., Jonsson, L. and Jönsson, P.: ISIJ Int., 48 (2008), 377.Google Scholar
13 Schwarz, M. P., Fluid Flow Phenomena in Metals Processing, ed. by El-Kaddah, N., Robertson, D. G. C., Johansen, S. T. and Voller, V. R., TMS, Warrendale, PA, 1999, 171.Google Scholar
14 Nakazono, D., Abe, K., Nishida, M. and Kurita, K.: ISIJ Int., 44 (2004), 91.Google Scholar
15 Nguyen, A. V. and Evans, G. M.: Appl. Math. Model., 30 (2006), 1472.Google Scholar
16 Solórzano-López, J., Zenit, R. and Ramírez-Argáez, M. A.: Rev. Metal. Madrid, (2010), Accepted for publication.Google Scholar