Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T19:55:51.014Z Has data issue: false hasContentIssue false

Materials Optimization for Silicon Heterojunction Solar Cells Using Spectroscopic Ellipsometry

Published online by Cambridge University Press:  01 February 2011

Dean Levi
Affiliation:
[email protected], NREL, Photovoltiacs, 1617 Cole Blvd., Golden, CO, 80401, United States, 303-384-6605
Eugene Iwanizcko
Affiliation:
[email protected], National Renewable Energy Lab, 1617 Cole Blvd., Golden, CO, 80401, United States
Steve Johnston
Affiliation:
[email protected], National Renewable Energy Lab, 1617 Cole Blvd., Golden, CO, 80401, United States
Qi Wang
Affiliation:
[email protected], National Renewable Energy Lab, 1617 Cole Blvd., Golden, CO, 80401, United States
Howard M Branz
Affiliation:
[email protected], National Renewable Energy Lab, 1617 Cole Blvd., Golden, CO, 80401, United States
Get access

Abstract

Our research team has used hot wire chemical vapor deposition (HWCVD) to fabricate silicon heterojunction (SHJ) solar cells on p-type FZ silicon substrates with efficiencies as high as 18.2%. The best cells are deposited on anisotropically-textured (100) silicon substrates where an etching process creates pyramidal facets with (111) crystal faces. Texturing increases Jsc through enhanced light trapping, yet our highest Voc devices are deposited on un-textured (100) substrates. One of the key factors in maximizing the efficiency of our SHJ devices is the process of optimization of the material properties of the 3 - 5 nm thick hydrogenated amorphous silicon (a-Si:H) layers used to create the junction and back contact in these cells. Such optimization is technically challenging because of the difficulty in measuring the properties of extremely thin layers. This difficulty is compounded by the fact that the properties of such amorphous layers are substrate- and thickness-dependent. In this study, we have utilized spectroscopic ellipsometry (SE) and photoconductivity decay to conclude that a-Si:H films grown on (111) substrates are substantially similar to films grown on (100) substrates. In addition, analysis of the substrate temperature dependence of surface roughness evolution reveals a substrate-independent mechanism of surface smoothening with an activation energy of 0.28 eV. Analysis of the substrate temperature dependence of surface passivation reveals a passivation mechanism with an activation energy of 0.63 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., Hanafusa, H., and Kuwano, Y., Jpn. J. Appl. Phys., 31 3518 (1992).Google Scholar
[2] Wang, T.H., Iwaniczko, E., Page, M.R., Levi, D.H., Yan, Y., Yelundur, V., Branz, H.M., Rohatgi, A., and Wang, Q.. Proc. 31st IEEE Photovoltaic Specialists Conference 955 (2005).Google Scholar
[3] Page, M.R., Iwanizcko, E., Xu, Y., Wang, Q., Yan, Y., Roybal, L., Branz, Howard M., and Wang, T.., Proc. 4th IEEE World Conf. on Photovoltaic Energy Conversion 1485 (2006).Google Scholar
[4] Levi, D.H., Teplin, C.W., Iwanizcko, E., Ahrenkiel, R.K., Branz, H.M., Page, M.R., Yan, Y., and Wang, Q., Mat. Res. Soc. Symp. Proc. 808, 239 (2004).Google Scholar
[5] Wang, T.H., Iwaniczko, E., Page, M.R., Wang, Qi, Xu, Y., Yan, Y., Levi, D., Roybal, L., Bauer, R., Branz, H.M., Proc. 4th IEEE World Conf. on Photovoltaic Energy Conversion 1439 (2006).Google Scholar
[6] Sinton, R.A. and Cuevas, A., Appl. Phys. Lett. 69, 2510 (1996).Google Scholar
[7] Ferlauto, A.S., Koval, R.J., Wronski, C.R., Collins, R.W., Mat. Res. Soc. Symp. Proc 664 A5.4.1 (2001).Google Scholar
[8] Yao, H., Woollam, J.A., Alterovitz, S.A. Appl. Phys. Lett. 62 (1993) 3324.Google Scholar
[9] Smets, A.H.M., Kessels, W.M.M., and Sanden, M.C.M. van de, Appl. Phys. Lett. 82, 865866 (2003).Google Scholar
[10] Valipa, M. S., Bakos, T., Aydil, E. S., and Maroudas, D., Phys. Rev. Lett., 95 216102 (2005).Google Scholar
[11] Aydil, E.S.; Agarwal, S.; Valipa, M.S.; Hoex, B.; van de Sanden, M.C.M.; Maroudas, D. Surface Science 598, 35 (2005).Google Scholar