Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T10:05:33.000Z Has data issue: false hasContentIssue false

Magnetic Properties of Hitperm (Fe,Co)88Zr7B4Cu1 Nanocrystalline Magnets (Invited)

Published online by Cambridge University Press:  21 February 2011

M. A. Willard
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890
M. Gingras
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890
M. J. Lee
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890
V. G. Harris
Affiliation:
Naval Research Laboratory, Washington, D.C., 20375-5000
D. E. Laughlin
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890
M. E. Mchenry
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890
Get access

Abstract

Alloys consisting of Fe-Co-M-B-Cu (with M = Zr, Hf, Nb), called HITPERM alloys, have been developed. Synchrotron X-radiation studies have been used to show that the ferromagnetic phase in an equiatomic FeCo-based alloy is the α'-FeCo phase. Since both the α'-FeCo phase and the FeCo-based amorphous phase of the nanocrystalline alloy have high Curie temperatures, a high magnetization persists up to the α -> γ structural phase transformation temperature of 980°C. Room temperature AC permeability measurements have shown that the alloys maintain a high permeability of ∼2000 up to a frequency of 20 kHz. The room temperature core loss has also been shown to be competitive with commercial high temperature magnetic alloys with a value of 1 W/g at Bs = 10 kG andf= 10 kHz. Analysis of extended X-ray absorption fine structure (EXAFS) data is consistent with a two-phase mixture of nanocrystalline body centered cubic derivative FeCo structure and an amorphous Zr-rich phase. A differential scanning calorimetry study of the primary crystallization reaction shows an activation energy of 323.3 kJ/mol. As a preliminary study of phase and grain stability, broadening of X-ray diffraction peaks indicates little grain growth after annealing at 600 °C for 3072 hours.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoshizawa, Y., Oguma, S., and Yamauchi, K., J. Appl. Phys. 64, 6044 (1988).Google Scholar
2. Suzuki, K., Makino, A., Kataoka, N., Inoue, A., and Masumoto, T., Mat. Trans. JIM–32, 93(1991).Google Scholar
3. Makino, A., Hatanai, T., Naitoh, Y., Bitoh, T., Inoue, A., and Masumoto, T., IEEE Trans. Magn. 33, 3793 (1997).Google Scholar
4. McHenry, M. E., Willard, M. A., and Laughlin, D. E.. Progress in Materials Science (1999), in press.Google Scholar
5. Willard, M. A., Laughlin, D. E., McHenry, M. E., Thoma, D., Sickafus, K., Cross, J. O. and Harris, V. G.. J. Appl. Phys. 84, 6773 (1998).Google Scholar
6. Willard, M. A., Huang, M.-Q., Laughlin, D. E., and McHenry, M. E., Franchetti, C., Cross, J. O., and Harris, V. G.. J. Appl. Phys. 85 (1999) 4421.Google Scholar
7. Iwanabe, H., Lu, B., McHenry, M. E., and Laughlin, D. E.. J. Appl. Phys. 85, 4424 (1999).Google Scholar
8. Ayers, J. D., Harris, V. G., Sprague, J. C., and Elam, W. T., Appl. Phys. Lett. 64, 974 (1994).Google Scholar
9. Herzer, G., IEEE Trans. Magn. 26, 1397 (1990).Google Scholar
10. Herzer, G., J. Magn. Mag. Mat. 112, 258 (1992).Google Scholar
11. Kissinger, H. E.. J. Res. Nat. Bur. Stand. 57, 217 (1956).Google Scholar
12. Kissinger, H. E.. Ana. Chem. 29, 1702 (1957).Google Scholar
13. Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., Reading, MA, 1978), p. 102.Google Scholar
14. Varga, L. K.. Mat. Sci. and Eng. A179/A180, 567 (1994).Google Scholar
15. Conde, C. F. and Conde, A.. Mat. Lett. 21,409 (1994).Google Scholar
16. Hono, K., Inoue, A., and Sakurai, T.. Appl. Phys. Lett. 58 (1991) 2180 Google Scholar
17. Hono, K., Li, J.-L., Ueki, Y., Inoue, A., and Sakurai, T.. Appl. Surf. Sci. 67 (1993) 398 Google Scholar
18. Kim, S. H., M Matsuura, Sakurai, N., and Suzuki, K.. Jpn. A. Appl. Phys. 32 (1993) Supp. 32-2, 676 Google Scholar
19. Ayers, J. D., Harris, V. G., Sprague, J. C., Elam, W. T., and Jones, H. N., Acta Mater. 46, 1861 (1998).Google Scholar