Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T02:32:41.840Z Has data issue: false hasContentIssue false

Magnetic properties of Fe-pnictides superconductors as a function of pressure and doping

Published online by Cambridge University Press:  20 July 2012

Gianni Profeta
Affiliation:
Dipartimento di Fisica Universita’ degli Studi dell’Aquila and CNR-Spin – Via Vetoio 10. 67100 L’Aquila (ITALY)
Nicola Colonna
Affiliation:
SISSA, via Bonomea, 265 - 34136 Trieste (ITALY)
Alessandra Continenza
Affiliation:
CNISM -Dipartimento di Fisica Università degli Studi dell’Aquila Via Vetoio 10 - 67100 L’Aquila (ITALY)
Get access

Abstract

We present a first principles study of the electronic and magnetic properties of Fe-based pnicitdes superconductors as a function of pressure and doping. We show that the magnetic phase and a local magnetic moment persists at doping level quite larger than what found in experiments and the pressure phase diagram consists of a paramagnetic, antiferromagnetic and non-magnetic phases.

Although this result calls for the inclusion of long-wavelength or local fluctuations of iron magnetic moment and non-hydrostatic pressure effects, in order to improve the theoretical description of real experimental conditions, recent photoemission experiments[1] reconcile these DFT results, showing a local magnetic moment on Fe site different from zero in the paramagnetic, antiferromagnetic and the superconducting phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vilmercati, P. et al. ., cond-mat arXiv:1203.1950 (2012).Google Scholar
2. Mazin, I. I., et al. ., Phys. Rev. B 78, 085104 (2008).Google Scholar
3. Singh, D. J., Phys. Rev. B 78, 094511 (2008).Google Scholar
4. Yin, Z. P., Haule, K. and Kotliar, G., Nat. Mat. 10, 932 (2011).Google Scholar
5. Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
6. Kresse, G. and Furthmuller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
7. Perdew, J. P. et al. ., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
8. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
9. Colonna, N. et al. ., Phys. Rev. B 83, 094529 (2011); ibidem 224526(2011).Google Scholar
10. Sanna, S. et al. ., Phys. Rev B 80, 052503 (2009).Google Scholar
11. Margadonna, S. et al. ., Phys. Rev. B 79, 014503 (2009).Google Scholar
12. Kimber, S. A. J. et al. ., Nat. Mater. 8, 471 (2009).Google Scholar
13. Mittal, R. et al. ., Phys. Rev. B 83, 054503 (2011).Google Scholar