Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T09:11:36.827Z Has data issue: false hasContentIssue false

Magnetic Polyolefin-based Nanocomposites

Published online by Cambridge University Press:  01 May 2013

Qingliang He
Affiliation:
Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710United [email protected]
Suying Wei
Affiliation:
Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710
Zhanhu Guo
Affiliation:
Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710United [email protected]
Get access

Abstract

Magnetic polyolefin-based nanocomposites were fabricated through a facile one-pot thermal decomposition of organo-metallic precursor, i.e. Fe(CO)5 in polymer-solvent solution condition. The whole fabrication includes dissolution of polyolefin-based hosting matrix in refluxing organic solvent followed by the injection of metallic precursor to perform the in-situ thermal decomposition step. The particle sizes, morphology and dispersion quality of these in-situ synthesized magnetic nanoparticles were investigated by transmission electron microscopy (TEM). Room temperature mössbauer spectrum analysis was used to determine the species of these magnetic nanoparticles. Room temperature magnetic property investigation was utilized to further reveal the magnetic behaviors of these nanocomposites by specifying the saturation magnetization and coercive forces. Thermal gravimetric analysis (TGA) was used to determine the thermal stability of these as-prepared nanocomposites and the particle loadings. The formation mechanisms of these magnetic particles were proposed from the evidence of TEM observations and detailed evolutions are detailed as well.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hyeon, T., Lee, S. S., Park, J., Chung, Y. and Na, H. B., Journal of the American Chemical Society 123 (51), 1279812801 (2001).CrossRefGoogle Scholar
Peng, S., Wang, C., Xie, J. and Sun, S., Journal of the American Chemical Society 128 (33), 1067610677 (2006).CrossRefGoogle Scholar
Cabot, A., Puntes, V., Shevchenko, E., Yin, Y., Balcells, L., Marcus, M., Hughes, S. and Alivisatos, A. P., Journal of the American Chemical Society 129 (34), 1035810360 (2007).CrossRefGoogle Scholar
Casula, M. F., Jun, Y., Zaziski, D. J., Chan, E. M., Corrias, A. and Alivisatos, A. P., Journal of the American Chemical Society 128 (5), 16751682 (2006).CrossRefGoogle Scholar
Berret, J. F., Schonbeck, N., Gazeau, F., El Kharrat, D., Sandre, O., Vacher, A. and Airiau, M., Journal of the American Chemical Society 128 (5), 17551761 (2006).CrossRefGoogle Scholar
Kaittanis, C., Santra, S. and Perez, J. M., Journal of the American Chemical Society 131 (35), 1278012791 (2009).CrossRefGoogle Scholar
Valero, E., Tambalo, S., Marzola, P., Ortega-Muñoz, M., López-Jaramillo, F. J., Santoyo-González, F., de Dios López, J., Delgado, J. J., Calvino, J. J. and Cuesta, R., Journal of the American Chemical Society 133 (13), 48894895 (2011).CrossRefGoogle Scholar
Jia, C., Sun, L., Luo, F., Han, X., Heyderman, L., Yan, Z., Yan, C., Zheng, K., Zhang, Z. and Takano, M., Journal of the American Chemical Society 130 (50), 1696816977 (2008).CrossRefGoogle Scholar
Bunker, C. and Karnes, J., J. Am. Chem. Soc. 126 (35), 1085210853 (2004).CrossRefGoogle Scholar
Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A. and Tan, W., Langmuir 17 (10), 29002906 (2001).CrossRefGoogle Scholar
Prakash, A., McCormick, A. and Zachariah, M., Chem. Mter. 16 (8), 14661471 (2004).CrossRefGoogle Scholar
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. and Muller, R. N., Chemical reviews 108 (6), 20642110 (2008).CrossRefGoogle Scholar
Hickey, R., Haynes, A., Kikkawa, J. and Park, S., J. Am. Chem. Society 133, 15171525 (2011).CrossRefGoogle Scholar
Huang, J., Bu, L., Xie, J., Chen, K., Cheng, Z., Li, X. and Chen, X., ACS nano 4 (12), 71517160 (2010).CrossRefGoogle Scholar
Lu, Y., Yin, Y., Mayers, B. T. and Xia, Y., Nano letters 2 (3), 183186 (2002).CrossRefGoogle Scholar
Woo, K., Hong, J., Choi, S., Lee, H. W., Ahn, J. P., Kim, C. S. and Lee, S. W., Chemistry of materials 16 (14), 28142818 (2004).CrossRefGoogle Scholar
Kim, H., Lee, M., Kim, Y., Huh, J., Kim, M., Kim, T., Phan, V. N., Lee, Y. B. and Yi, G. R., Angewandte Chemie International Edition 48 (28), 51295133 (2009).CrossRefGoogle Scholar
Kim, H., Lee, M., Kim, Y., Huh, J., Kim, M., Kim, T., Phan, V. N., Lee, Y. B. and Yi, G. R., Angewandte Chemie 121 (28), 52315235 (2009).CrossRefGoogle Scholar
Morlat, S., Mailhot, B., Gonzalez, D. and Gardette, J. L., Chemistry of materials 16 (3), 377383 (2004).CrossRefGoogle Scholar
Purohit, P. J., Huacuja-Sánchez, J. E., Wang, D. Y., Emmerling, F., Thünemann, A., Heinrich, G. and Schönhals, A., Macromolecules 44 (11), 43424354 (2011).CrossRefGoogle Scholar
Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A. and Alivisatos, A. P., Science 304 (5671), 711714 (2004).CrossRefGoogle Scholar
Keng, P., Shim, I., Korth, B., Douglas, J. and Pyun, J., ACS nano 1 (4), 279292 (2007).CrossRefGoogle Scholar
Qu, X., Kobayashi, N. and Komatsu, T., ACS nano 4 (3), 17321738 (2010).CrossRefGoogle Scholar
Zeng, S., Tang, K., Li, T., Liang, Z., Wang, D., Wang, Y., Qi, Y. and Zhou, W., The Journal of Physical Chemistry C 112 (13), 48364843 (2008).CrossRefGoogle Scholar
Van, K. T., Cha, H. G., Nguyen, K. C., Kim, S. W., Jung, M. H. and Kang, Y. S., Crystal Growth & Design 12 (2), 862868 (2012).CrossRefGoogle Scholar
Dutta, P., Manivannan, A., Seehra, M., Shah, N. and Huffman, G., Physical Review B 70 (17), 174428 (2004).CrossRefGoogle Scholar
He, Q., Yuan, T., Wei, S., Haldolaarachchige, N., Luo, Z., Young, D., Khasanov, A. and Guo, Z., Angewandte Chemie International Edition 51 (35), 88428845 (2012).CrossRefGoogle Scholar