Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T04:07:55.520Z Has data issue: false hasContentIssue false

Magnetic and dielectric properties study of cobalt ferrite nanoparticles synthesized by co-precipitation method

Published online by Cambridge University Press:  17 August 2011

M. Krishna Surendra
Affiliation:
Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai – 600036, INDIA.
D. Kannan
Affiliation:
Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai – 600036, INDIA.
M. S. Ramachandra Rao*
Affiliation:
Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai – 600036, INDIA.
*
*Corresponding author: [email protected]
Get access

Abstract:

Cobalt ferrite nanoparticles were prepared by co-precipitation method and were heat treated at 100 oC, 200 oC, 400 oC and 600 oC for 2 h to increase the particle size. Phase purity of samples was confirmed by X-ray diffraction. Scherrer formula calculations showed crystallite size varied from 12 to 24 nm when heated from 100 oC to 600 oC. Transmission electron microscopy reveals a uniform and narrow particle size distribution about 12 nm for as-prepared cobalt ferrite particles. Room temperature saturation magnetization was found to vary from 40.8 to 67.0 emu/g as the particle size increased from12 nm to 24 nm. Increase in saturation magnetization with increase in particle size was attributed to the presence of magnetic inert layer on the surface of nanoparticles. Inert layer thickness calculated at 10 K and 300 K was 6 Å and 11 Å respectively. The dielectric properties ε’, tanδ, Z and θ have been studied as a function of frequency and particles size. For the 12 nm grain size, the dielectric constant is one order higher than that of bulk cobalt ferrite. Increase in the grain size showed an increase in the dielectric constant. The increase in the conductivity with grain size is mainly due to the grain size effects. The present study shows that the dielectric properties can be tailor-made to suit the requirement of a particular application by controlling the grain size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

[1] Yamaguchi, K., Matsumoto, K. and Fujii, T., J. Appl. Phys. 67, 4493 (1990).Google Scholar
[2] Anton, A. I., J. Magn. Magn. Mater. , 85, 137 (1990).Google Scholar
[3] Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B. and Muhammed, M., J. Magn. Magn. Mater., 255, 256 (2001).Google Scholar
[4] Begg, A. C., Sprong, D., Balm, A. and Martin, J. M. C., Radiother. Oncol., 62, 335 (2002).Google Scholar
[5] Bucak, S., Jones, D. A., Laibinis, P. E. and Hatton, T.A., Biotechnol. Prog., 19, 477 (2003).Google Scholar
[6] Roullin, V. G., Deverre, J. R., Lemaire, L., Hindre, F., Julienne, M. C. V., Vienet, R. and Benoit, J. P., Eur. J. Pharm. Biopharm., 53, 293 (2002).Google Scholar
[7] Jordan, A., Scholz, R., Wust, P., Schbirra, H., Schiestel, T., Schmidt, H. and Felix, R., J. Magn. Magn. Mater., 194, 185 (1999).Google Scholar
[8] Suzuki, Y., van Dover, R. B., Gyorgy, E. M., Philips, J. M., Korenivski, J., Werder, J., Chen, C. H., Cava, R. J., Krajewski, J. J., Peck, W. F. and Do, K. B., Appl. Phys. Lett. 68, 714 (1996).Google Scholar
[9] Cheng, F. X., Jia, J. T., Xu, Z. G., Zhou, B., Liao, C. S., Yan, C. H., Chen, L. Y. and Zhao, H. B., J. Appl. Phys. 86, 2727 (1999).Google Scholar
[10] Kitamoto, Y., Kantake, S., Shirasaki, A., Abe, F. and Naoe, M., J. Appl. Phys. 85, 4708 (1999)Google Scholar
[11] Fontijn, W. F. G., van der Zaag, P. J., Feiner, L. F., Metselaar, R. and Devillers, M. A.C., J. Appl. Phys. 85, 5100 (1999).Google Scholar
[12] Verwey, E. J. W., Haaijman, P. W., Romeyn, F. C. and Van Oosterhout, G. M., Phil. Res. Rep., 5, 173 (1950).Google Scholar
[13] Goyot, M., J.Magn. Magn. Mater., 18, 925 (1980).Google Scholar
[14] Ponpandian, N., Balaya, P. and Narayanasamy, A., J. Phys.: Condens. Matter., 14, 3221 (2002).Google Scholar
[15] Vook, R. W., Int. Metals Rev., 27, 209 (1982).Google Scholar
[16] Kodama, R. H., Berkowitz, A. E., McNiff, E. J. Jr. and Foner, S., Phys. Rev. Lett., 7 7, 394 (1996).Google Scholar
[17] Chen, J. P., Sorensen, C. M., Klabunde, K. J., Hadjipanayis, G. C., Devlin, E. and Kostikas, A., Phys. Rev. B, 54, 9288 (1996).Google Scholar
[18] Grigorova, M., Blythe, H.J., Blaskov, V., Rusanov, V., Petkov, V., Masheva, V., Nihtianova, D., Martinez, Ll. M., Muňoz, J.S. and Mikhov, M., J. Magn. Magn. Mater., 183, 163 (1998).Google Scholar
[19] Farea, A. M. M., Kumar, S., Batoo, K. M., Yousef, A. and Alimuddin, , Physica B, 403, 684 (2008).Google Scholar