Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T07:20:40.697Z Has data issue: false hasContentIssue false

Luminescence Quenching in Erbium-Doped Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  10 February 2011

A. Polman
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, [email protected]
Jung H. Shin
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, [email protected]
R. Serna
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, [email protected]
G. N. Van Den Hovenb
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, [email protected]
W. G. J. H. M. van Sark
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, University of Utrecht P.O. Box 80000, 3508 TA Utrecht, the Netherlands
A. M. Vredenberg
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, University of Utrecht P.O. Box 80000, 3508 TA Utrecht, the Netherlands
S. Lombardo
Affiliation:
Dipartimento di Fisica, Università di Catania, Corso Italia 57, 1–95129 Italy
S. U. Campisano
Affiliation:
Dipartimento di Fisica, Università di Catania, Corso Italia 57, 1–95129 Italy
Get access

Abstract

Hydrogenated amorphous silicon thin films, co-doped with oxygen, are made using lowpressure chemical vapor deposition (LPCVD) or plasma-enhanced chemical vapor deposition (PECVD). The films are implanted with Er to a peak concentration of 0.2 at.%. Roomtemperature photoluminescence at 1.54 μm is observed in both amorphous materials, after thermal annealing at 300–400 °C. The PECVD films with low 0 content (0.3, 1.3 at.%) show a luminescence intensity quenching by a factor 7–15 as the temperature is raised from 10 K to room temperature. The quenching is well correlated with a decrease in luminescence lifetime, indicating that non-radiative decay of excited Er3+ is the dominant quenching mechanism as the temperature is increased. In the LPCVD films, with 31 at.% 0, the quenching is only a factor 3, and no lifetime quenching is observed. The results are interpreted in the context of an impurity Auger excitation model, taking into account the fact that oxygen modifies the Si bandgap and the Er-related defect levels in the gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 See, for example, Rare Earth Doped Semiconductors, edited by Pomrenke, G.S., Klein, P.B., Langer, D. W., Mat. Res. Soc. Symp. Proc. 301 (1993), and this proceedings: Rare Earth Doped Semiconductors 11, edited by Coffa, S., Polman, A., and Schwartz, R.N., Mat. Res. Soc. Symp. Proc. 422 (1996).Google Scholar
2 Polman, A., van den Hoven, G.N., Custer, J.S., Shin, J.H., Sema, R., and Alkemade, P.F.A., J. Appl. Phys. 77, 1256 (1995).Google Scholar
3 Coffa, S., Franzò, G., Priolo, F. , S, Polman, A., and Sema, R., Phys. Rev. B 49, 16313 (1994).Google Scholar
4 Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E. A., Xie, Y.H., Poate, J.M., and Kimerling, L.C., J. Appl. Phys. 70, 2672 (1991).Google Scholar
5 Serna, R., Snoeks, E., van den Hoven, G.N., and Polman, A., J. Appl. Phys. 75, 2644 (1994).Google Scholar
6 Priolo, F., Franzò, G., Coffa, S., Polman, A., Libertino, S., Barklie, R., and Carey, D., J. Appl. Phys. 78, 3874 (1995).Google Scholar
7 Franzò, G., Priolo, F., Coffa, S., Polman, A., and Camera, A., Appl. Phys. Lett. 64, 2235 (1994).Google Scholar
8 Zhen, B., Michel, J., Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C., and Poate, J. M., Appl. Phys. Lett. 64, 2842 (1994).Google Scholar
9 Eaglesham, D.J., Michel, J., Fitzgerald, E.A., Jacobson, D.C., Poate, J.M., Benton, J.L., Polman, A., Xie, Y.-H., and Kimerling, L.C., Appl. Phys. Lett. 58, 2797 (1991).Google Scholar
10 Custer, J. S., Snoeks, E., and Polman, A., Mat. Res. Soc. Symp. Proc. 235, 51 (1992).Google Scholar
11 Shin, Jung H., Serna, R., van den Hoven, G.N., Polman, A., van Sark, W.G.J.H.M., and Vredenberg, A.M., Appl. Phys. Lett. 68, 997 (1996).Google Scholar
12 van den Hoven, G.N., Shin, Jung H., Polman, A., Lombardo, S., and Campisano, S.U., J. Appl. Phys. 78, 2642 (1995).Google Scholar
13 de Dood, M.J.A., Kik, P.G., Shin, Jung H., and Polman, A., this proceedings: Mat. Res. Soc. Symp. Proc. 422 (1996).Google Scholar
14 Libertino, S., Coffa, S., Franzò, G., and Priolo, F., J. Appl. Phys. 78, 3867 (1995).Google Scholar
15 Compagnini, G., Lombardo, S., Reitano, R., and Campisano, S.U., J. Mater. Res. 10, 885 (1995).Google Scholar
16 Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M., Ganneau, M., Mat. Res. Soc. Symp. Proc. 301,181 (1993).Google Scholar