Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T03:20:02.780Z Has data issue: false hasContentIssue false

Low Threshold Field Emission From Nanocluster Carbon Films

Published online by Cambridge University Press:  10 February 2011

W.I. Milne
Affiliation:
Dept of Engineering, Cambridge University, Cambridge. CB2 1PZ, UK. Tel. +1223 3327257, Fax +1223 766207, e-mail, [email protected]
B.S. Satyanarayana
Affiliation:
Dept of Engineering, Cambridge University, Cambridge. CB2 1PZ, UK. Tel. +1223 3327257, Fax +1223 766207, e-mail, [email protected]
J. Robertson
Affiliation:
Dept of Engineering, Cambridge University, Cambridge. CB2 1PZ, UK. Tel. +1223 3327257, Fax +1223 766207, e-mail, [email protected]
Get access

Abstract

Carbon films with variable sp3/sp2 bonding ratio can be deposited on a variety of substrates at room temperature, using the cathodic vacuum arc deposition process. The variation in their surface morphology as a function of He and N2partial pressure during growth have been investigated and it has been shown that the morphology of the films can be varied from the mirror like smooth tetrahedrally bonded carbon (ta-C) films through nanocluster to fibrous type carbon. This paper reviews the work carried out on Field Emission from these various carbon films. Threshold fields as low as 1 V/μm for emission current densities of 1 μA/cm2 and emission site densities of up to 104 -105/cm2 have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, C., Garcia, A., Ingram, D.C., and Kordesch, M.E., Electron. Lett. 27, 1459 (1991).Google Scholar
2. Talin, A A, Pan, L S, McCarty, K F, Doerr, H J, Bunshah, R F, Appl Phys Lett 69, 3842 (1996).Google Scholar
3. Zhu, W., Kochanski, G P, Jin, S, Seibles, L, J Vac Sci Technol B 14, 2060 (1996).Google Scholar
4. Amaratunga, G A J, Silva, S R P, App Phys Lett 68, 2529 (1996).Google Scholar
5. Satyanarayana, B S, Hart, A, Milne, W I & Robertson, J, App Phys Lett 71, 1430 (1997).Google Scholar
6. Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P. and Provencio, P. N.,Science, 283, 1105, (1998).Google Scholar
7. Kuttel, O.M., Groening, O., Emmenegger, C. & Schlapbach, L., App Phys Lett, 73, 2113 (1998).Google Scholar
8. Chen, Y., Patel, S., Ye, Y., Shaw, D.T. & Guo, L., App. Phys. Lett, 73, 2119 (1998).Google Scholar
9. Coll, B.F., Jaskie, J.E., Markham, J.L., Menu, E.P., Talin, A.A., Allmen, P.von, MRS. Sym Proc. Vol 498, 185 (1998).Google Scholar
10. Obraztsov, O.N., Volkov, A.P. and Pavlovsky, I.Yu., JETP Letters, 68, 59 (1998).Google Scholar
11. Robertson, J., J Vac Sci Technol B 17, 659 (1999).Google Scholar
12. Fallon, P.J., Veeraswamy, V.S., Davis, C.A., Robertson, J., Amaratunga, G.A.J., Milne, W.I., Koskinen, J., Phys.Rev.B 48, 4777 (1993).Google Scholar
13. Amaratunga, G.A.J., Chhowalla, M., Kiley, C.J., Alexandrou, I., Aharonov, R.A. and Devenish, R., Nature 383, 321 (1996).Google Scholar
14. Veerasamy, V.S., Yuan, J., Amartunga, G.A.J., Milne, W.I., Gilkes, K.W.R., Weiler, M. & Brown, L.M.. Phys.Rev.B. 48, 17954 (1993)Google Scholar
15. Hart, A., Satyanarayana, B.S., Robertson, J. & Milne, W.I, Appl. Phys Lett. 74,594 (1999)Google Scholar
16. Satyanarayana, B S, Hart, A, Milne, W I & Robertson, J, Diamond & Related Materials 7, 656 (1998).Google Scholar
17. Amaratunga, G.A.J., Baxendale, M., Rupesinghe, N., Alexandrou, I., Chhowalla, M., Butler, T., Munundradasa, A., Kiley, C.J., Zhang, L. and Sakai, T., New Diamond and Frontier Tech., 9, 31, (1999)Google Scholar
18. Zhu, W., Bower, C., Zhou, O., Kochanski, G.P. and Jin, S., Appl. Phys. Lett., 75, 873 (1999)Google Scholar
19. Satyanarayana, B.S., Robertson, J. and Milne, W.I., Accepted for publication in Journal of App. Phys., 2000 Google Scholar